
Abstract1

This paper presents a specification framework for monadic, recursive, interactive programs that2

supports auto-active verification, an approach that combines user-provided guidance with automatic3

verification techniques. This verification tool is designed to have the flexibility of a manual approach4

to verification along with the usability benefits of automatic approaches. We accomplish this by5

augmenting Interaction Trees, a Coq datastructure for representing effectful computations, with6

logical quantifier events. We show that this yields a language of specifications that are easy to7

understand, automatable, and are powerful enough to handle properties that involve non-termination.8

Our framework is implemented as a library in Coq. We demonstrate the effectiveness of this framework9

by verifying real, low-level code.10

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of11

computation → Programming logic; Theory of computation → Separation logic12

Keywords and phrases coinduction, specification, verification, monads13

Digital Object Identifier 10.4230/LIPIcs...14

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Interaction Tree Specifications: A Framework for15

Specifying Recursive, Effectful Computations that16

Supports Auto-active Verification17

Lucas Silver #18

University of Pennsylvania, USA19

Eddy Westbrook #20

Galois, Inc.21

Matthew Yacavone #22

Galois, Inc.23

Ryan Scott #24

Galois, Inc.25

1 Introduction26

Formal verification is starting to see adoption in industry as a tool for ensuring the security27

and correctness of software. For instance, the formally verified seL4 microkernel [13] has28

established a foundation that is seeing investment from a wide variety of industrial partners.29

Block-chain companies are using formal verification to ensure the security of cryptocur-30

rency [15]. Amazon has even incorporated formal verification into the CI/CD process of31

their s2n cryptographic library [7].32

Unfortunately, formal verification still remains expensive, not just in terms of time and33

effort but also in terms of the expertise required to formally verify a system. A number34

of powerful frameworks have been developed for manual formal verification, including Iris35

[12], VST [2], and FCSL [24]. These frameworks can specify a wide array of behaviors on a36

wide array of languages, but they require an expert to be used effectively. Other powerful37

frameworks have been developed for automatic verification, including approaches such as38

bounded model-checking [4] and property-directed reachability [5]. While these approaches39

can be operated by non-experts, they are limited in their expressiveness, leaving important40

properties unverified.41

It is particularly difficult to reason about low-level code that contains complicated42

manipulations of pointer structures on the heap, as is common in languages like C, C++,43

and LLVM. Recently, researchers have tackled this problem using the observation that44

programs that are well-typed in a memory-safe, Rust-like type system are basically functional45

programs [3, 9, 10, 17, 18]. That is, there exists a program in a functional language whose46

behavior is equivalent to the original, heap-manipulating program. We call this functional47

program a functional specification. While many projects rely only implicitly on the functional48

specification, some, like the Heapster project [9], reify functional specifications into concrete49

code. Engineers can then verify properties about the derived functional code, and ensure50

those properties hold on the original program.51

The Heapster tool consists of two components: a memory-safe type system for LLVM code,52

and a translation tool that produces an equivalent functional program from any well-typed53

LLVM program. Heapster uses these components to break verification of heap manipulating54

programs into two phases: a memory-safe type-checking phase that generates a monadic,55

recursive, interactive program that is equivalent to the original program; and a behavior-56

verification phase that ensures that the generated program has the correct behavior. Previous57

work has left open major questions about the behavior verification phase, namely, what58

should the language of specifications be and how do we actually prove that the programs59

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lucsil@seas.upenn.edu
mailto:westbrook@galois.com
mailto:myac@galois.com
mailto:rscott@galois.com
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:3

satisfy the specifications.60

This work answers these questions by developing a logic well-suited to reasoning about61

the programs output by Heapster, as well as tools to work with these logical formulae. Taken62

together, the Heapster tool and this work form a two-step pipeline for verifying low-level,63

heap manipulating programs. Heapster transforms low-level, heap manipulating programs64

into equivalent functional programs. The techniques in this paper enable proof engineers to65

write and prove specifications over the resulting functional programs.66

In this work, we present interaction tree specifications, or ITree specifications. ITree67

specifications are an auto-active verification framework for monadic, recursive, interactive68

programs based on interaction trees [29], or ITrees. Auto-active verification is a verification69

technique that merges user input and automated reasoning to leverage the benefits of each.70

Monadic, recursive, interactive programs have the ability to diverge, can interact with71

their environment, but otherwise act as pure functional programs. Interactions with the72

environment can include making a system call, sending a message from a server, and throwing73

an error. ITrees are a model for monadic, recursive, interactive programs formalized in Coq.74

ITree specifications are designed to be able to write and verify specifications about the output75

programs of the Heapster translation tool, which are written in terms of ITrees.76

The main body of work that takes on the task of verifying monadic programs is the77

Dijkstra monad literature [1, 16, 27, 28]. However, most of the Dijkstra monad literature78

cannot handle the kinds of termination sensitive specifications that we need. These papers79

either assume a strongly normalizing language, or handle only partial specifications. The80

exception to this is the work of Silver and Zdancewic [25]. However, while that work does81

have a rich enough specification language for our goals, it has two significant shortcomings.82

First, the work provides no reasoning principles for arbitrary recursive specifications. Second,83

the work does not attempt to automate the verification of these specifications. Our work84

accomplishes both of these goals.85

This work is based on the idea of augmenting ITrees with operations for logical quantifiers.86

We show that this idea leads to a language of specifications that is:87

easy to read, because the specifications are simply programs annotated with logical88

quantifiers,89

capable of encoding recursive specifications, because the underlying computational lan-90

guage has a powerful recursion operator, and91

amenable to auto-active verification, because specifications are syntactic constructs92

enabling syntax-directed inference rules.93

ITrees represent computations as potentially infinite trees whose nodes are labelled with94

events. Events are syntactic representations of computational effects, like raising an error,95

or sending data from a server. ITrees can be used to represent the semantics of recursive,96

monadic, interactive programs. ITree specifications are ITrees enriched with events for logical97

quantifiers. This language of specifications has the capability to express purely executable98

computations, fully abstract specifications, and combinations of both. For example, consider99

the following executable specification server_impl for a simple server program that sorts lists100

which are sent to it:101

102
Definition server_impl : unit → itree_spec E void :=103

rec_fix_spec (fun rec _ ⇒104
l � trigger rcvE;;105
ls � sort l;;106
trigger (sendE ls);;107
rec tt108

).109110

XX:4 Interaction Tree Specifications

Class EncodingType (E:Type) : Type :=
response_type : E → Type.

Figure 1 EncodingType typeclass definition

This specification is defined with rec_fix_spec, a recursion operator (defined in Section 4)111

where applications of the rec argument correspond to recursive calls. The body of the recursive112

function first calls trigger rcvE, which triggers the use of the receive event rcvE, causing the113

program to wait to receive data. The list l that is received is then passed to the sort function,114

defined in Section 6, which is a recursive implementation of the merge sort algorithm. Finally,115

the sorted list returned by sort is sent as a response with trigger (sendE ls), and the server116

program loops back to the beginning by calling rec.117

Now, consider the following specification of the behavior of our server using a combination118

of executable and abstract features:119

120
Definition server_spec : unit → itree_spec E void :=121

rec_fix_spec (fun rec _ ⇒122
l � trigger rcvE;;123
ls � exists_spec (list nat);;124
assert_spec (Permutation l ls);;125
assert_spec (sorted ls);;126
trigger (sendE ls);;127
rec tt).128129

This function acts mostly like server_impl but, instead of computing a sorted list, it uses the130

existential quantification operation exists_spec to introduce the list value ls, which it then131

asserts is a sorted permutation of the initial list. By leaving this part of the specification132

abstract, it allows the user to express that it is unimportant how the list is sorted, as long as133

the response is a sorted permutation of the input list. The send and receive events, however,134

are left concrete, allowing the user to specify what monadic events should be triggered in135

what order. This specification implicitly defines a liveness property of the server, it will136

reject any program that fails to eventually perform the next send or receive. By using a137

single language for programs and specifications, our approach provides a natural way for138

users to control how concrete or abstract the various portions of their specifications are. Our139

approach then provides auto-active tools for proving that programs refine these specifications.140

Necessary background explaining ITrees and Heapster is given in Section 2 and Section 3.141

The contributions of this paper are as follows:142

ITree specifications, a data structure for representing specifications over monadic, recursive,143

interactive programs, presented in Section 4144

a specification refinement relation over ITree specifications, along with collection of145

verified, syntax-directed proof rules for refinement also presented in Section 4,146

tools for encoding and proving refinements involving total correctness specifications in147

ITree specifications presented in Section 5,148

an auto-active verification technique briefly discussed in Section 6149

an evaluation of the presented techniques in the form of verifying a collection of realistic150

C functions using ITree specifications and Heapster presented in Section 6.151

2 Background152

ITrees are a formalization for denotational semantics implemented as a coinductive variant of153

the free monad in Coq. ITrees represent programs as potentially infinite trees. The nodes of154

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:5

these trees are labelled with events. Events can, depending on the context, either represent155

algebraic effects or recursive function calls. The ITree type is parameterized by a return156

type R and a type family E, where E has an instance of the EncodingType type class defined in157

Figure 1. The EncodingType type class consists of function, named response_type, from E to158

Type. A value of type itree E R is a potentially infinite tree whose internal nodes are each159

labelled with an event e of type E, with one branch for each element of the response_type e160

whose leaves are labelled with an element of type R. Such a tree represents an effectful161

computation, where the leaves represent termination of the computation with a return value162

in R while the nodes represent uses of monadic effects. The event e of type E that labels163

a node represents a monadic effect that returns a value of type response_type e, and the164

children of that node represent the possible continuations of that computation depending on165

the return value of the effect. This is formalized in the following Coq code1.166

167
CoInductive itree (E : Type) {̀EncodingType E} (R : Type) :=168

| Ret (r : R)169
| Tau (t : itree E R)170
| Vis (e : E) (k : response_type e → itree E R).171172

The ITree datatype has three constructors. The Ret constructor represents a pure computation173

that simply returns a value. The Ret constructor forms the leaves of an ITree. The Tau174

constructor represents one step of silent internal computation followed by another ITree.175

Finally, the Vis constructor contains an event e along with a continuation function k which176

defines all the branches of this Vis node.177

Because ITrees are defined coinductively, we can construct ITrees with infinitely long178

branches. Such ITrees represent divergent computations. For example, the following code179

describes an ITree that consists of an infinite stream of Tau constructors with no events.180

181
CoFixpoint spin : itree E R := Tau spin.182183

In practice, ITrees often end up using an event type family E that is a composition of184

several smaller type families combined in a large sum. This can easily clutter and complicate185

the notation. To avoid this burden, the ITrees library introduces the ReSum typeclass defined186

in Figure 2. An instance of ReSum E1 E2, written E1 -< E2, contains two functions: the187

resum function that injects an element of E1 into E2, and the resum_ret function that maps188

elements from the response type of resum e to the response type of e. It can be thought189

of as a kind of subevent typeclass. The ReSum typeclass allows for the definition of the190

trigger function in Figure 2. The trigger function takes an event e : E1 and injects it into191

itree E (response_type e) by injecting e into E2, placing that in a Vis node, and applying192

the resum_ret function to the response.193

194

2.1 Equivalence up to Tau195

One of the major advantages of the ITrees library is its rich equational theory. The primary196

notion of equivalence used for ITrees is called eutt or equivalence up to tau. Xia et al. [29]197

defines eutt as a bisimulation relation that quotients out finite differences in the number198

of Tau constructors. We use this relation because Tau constructors are supposed to indicate199

silent steps of computation. Ignoring finite numbers of Tau constructors lets us equate two200

ITrees that vary only in the number of silent computation steps.201

1 In the actual formalization, we use a negative coinductive types presentation of this data structure.

XX:6 Interaction Tree Specifications

Class ReSum (E1 : Type) (E2 : Type) {̀EncodingType E1} {̀EncodingType E2} :=
{

resum : E1 → E2;
resum_ret : forall {e : E1}, response_type (resum e) → response_type e;

}.

Notation "E1 -< E2" := (ReSum E1 E2) (at level 10).

Definition trigger {E1 E2} {̀EncodingType E1} {̀EncodingType E2} {̀E1 -< E2} :forall (e1
: E1), (itree E2 (response_type e1)) :=

fun e ⇒ Vis (resum e) (fun x ⇒ Ret (resum_ret x)).

Figure 2 ReSum Definition

Example spin ≈ spin.

Example ∼(spin ≈ Ret 0).

Example Tau (Ret 0) ≈ Ret 0.

Figure 3 eutt Examples

The eutt relation is parameterized by a relation RR over return values. If the relation202

RR is heterogeneous, relating values over distinct types R1 and R2, then eutt RR is also a203

heterogeneous relation over itree E R1 and itree E R2. Intuitively, if eutt RR t1 t2, then the204

Vis nodes of t1 precisely match those of t2, and if equivalent paths in t1 and t2 lead to the205

leaves Ret r1 and Ret r2 then the values r1 and r2 are related by RR. Often, we are interested206

in eutt eq and denote this relation with the symbol ≈.207

The eutt relation is implemented in Coq using both inductive and coinductive techniques.208

Observe the following definition of eutt:209

210
Inductive euttF (RR : R1 → R2 → Prop) (sim : itree E R1 → itree E R2 → Prop) :211

itree E R1 → itree E R2 → Prop :=212
| eutt_Ret (r1 : R1) (r2 : R2) : euttF RR sim (Ret r1) (Ret r2)213
| eutt_Tau (t1 : itree E R1) (t2 : itree E R2) :214

sim t1 t2 → euttF RR sim (Tau t1) (Tau t2)215
| eutt_Vis (e : E) (k1 : response_type e → itree E R1)216

(k2 : response_type e → itree E R2) :217
(forall a, sim (k1 a) (k2 a)) → euttF RR sim (Vis e k1) (Vis e k2)218

| eutt_TauL (t1 : itree E R1) (t2 : itree E R2) :219
euttF RR sim t1 t2 → euttF RR sim (Tau t1) t2220

| eutt_TauR (t1 : itree E R1) (t2 : itree E R2) :221
euttF RR sim t1 t2 → euttF RR sim t1 (Tau t2).222223

224
Definition eutt (RR : R1 → R2 → Prop) := gfp (euttF RR).225226

The euttF relation is an inductively defined relation, defined in terms of the sim argument.227

The eutt relation is then defined as the greatest fixpoint of euttF. In this paper, all greatest228

fixpoints are defined using the paco library[11] for coinductive proofs. Calls to the sim229

argument in the definition of euttF correspond to coinductive calls of eutt. Recursive calls230

to euttF correspond to inductive calls of eutt. This method of defining eutt allows the231

coinductive constructors to be called infinitely often in sequence, while only a finite number232

of calls to inductive constructors can be called without an intervening call to a coinductive233

constructor. Specifically, only finitely many eutt_TauL and eutt_TauR steps, that remove a234

Tau from only one side, are allowed before one of the remaining rules must be used to relate235

the same constructor on both sides.236

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:7

This definition allows us to achieve our goal of ignoring any finite difference in numbers237

of Tau constructors. In particular the equations and inequalities presented in Figure 3 hold.238

ITrees form a monad. Monads are type families with a ret combinator that denotes a239

pure value, and a bind combinator that sequentially composes two monadic computations240

into one. The ret combinator is implemented with the Ret constructor, while the bind t k241

combinator is implemented as a coinductive function that traverses the ITree t and replaces242

each leaf Ret r with the new subtree k r. This is implemented in the following Coq code:243

244
CoFixpoint bind (t : itree E R) (k : R → itree E S) :=245

match t with246
| Ret r ⇒ k r247
| Tau t ⇒ Tau (bind t k)248
| Vis e kvis ⇒ Vis e (fun x ⇒ bind (kvis x) k)249
end.250251

2.2 Mutually Recursive Computations252

This section explains the recursion operator introduced by Xia et al. [29]. That work253

demonstrated how to use events as a piece of syntax for writing collections of mutually254

recursive functions over ITrees. Specifically, it introduced the mrec combinator, which lifts255

a collection of function bodies that syntactically reference one another to a collection of256

actually recursive functions. A similar recursion combinator is used extensively in Section 4257

and Section 6.258

When using the mrec combinator, you must first choose an event type D, with an259

EncodingType instance, to serve as the type of recursive calls. An element d : D packages260

together the choice of the function being called along with the arguments being supplied261

to that function. The return type of the function call d is response_type d. In this context,262

an ITree with the type itree (D + E) R represents the body of a mutually recursive function263

viewing the recursive calls as inert D events. This ITree defines a recursive function in terms of264

syntactic recursive calls. In order to resolve these syntactic recursive calls, we need a mapping265

from recursive calls to a single layer of unfolding of the recursive function. This is represented266

as a function of type bodies : forall (d:D), itree (D + E) (response_type d). The variable267

name bodies refers to the fact that this term represents the body of each function in this268

collection of mutually recursive functions. We can then take this ITree, corecursively replace269

each d : D event with the unfolded function body bodies d, and then repeat the process with270

the resulting ITree. This is formalized in the following interp_mrec function.271

272
CoFixpoint interp_mrec {R : Type}273

(bodies : forall (d:D), itree (D + E) (response_type d))274
(t : itree (D + E) R) : itree E R :=275
match t with276
| Ret r ⇒ Ret r277
| Tau t ⇒ Tau (interp_mrec bodies t)278
| Vis (inr e) k ⇒ Vis e (fun x ⇒ interp_mrec bodies (k x))279
| Vis (inl d) k ⇒ Tau (interp_mrec bodies (bind (bodies d) k))280
end.281282

Given this function that can resolve the recursive calls in an ITree, we can define the mrec283

function that takes an initial recursive call init : D and computes its result.284

285
Definition mrec (bodies : forall (d:D), itree (D + E) (response_type d)) (init : D)286

:=287
interp_mrec bodies (bodies init).288289

Figure 4 provides an example of a mutually recursive function defined with mrec. The290

evenoddE type represents calls to compute the parity of a natural number. The evenodd291

function computes either the even or the odd function depending on the initial recursive call292

XX:8 Interaction Tree Specifications

Variant evenoddE : Type:=
| even (n : nat) : evenoddE
| odd (n : nat) : evenoddE.

Instance EncodingType_evenoddE : EncodingType evenoddE := fun _ ⇒ bool.

Definition evenodd_body : forall eo : evenoddE, (itree (evenoddE + voidE)) (
response_type eo) :=

fun eo ⇒
match eo with
| even n ⇒ if Nat.eqb n 0

then Ret true
else trigger (odd (n -1))

| odd n ⇒ if Nat.eqb n 0
then Ret false
else trigger (even (n -1))

end.
Definition evenodd : evenoddE → itree voidE bool :=

mrec evenodd_body.

Figure 4 evenodd Definition

Definition Rel (A B : Type) : Type := A → B → Prop.
Definition PostRel (D1 D2 : Type) {̀EncodingType D1} {̀EncodingType D2} : Type :=

forall (d1 : D1) (d2 : D2), response_type d1 → response_type d2 → Prop.

Inductive RComposePostRel
(R1 : Rel D1 D2) (R2 : Rel D2 D3) (PR1 : PostRel D1 D2) (PR2 : PostRel D2 D3) :
PostRel D1 D3 :=
| RComposePostRel_intros (d1 : D1) (d3 : D3) (a : response_type d1) (c :

response_type d3) :
(forall (d2 : D2), R1 d1 d2 → R2 d2 d3 →
exists b, PR1 d1 d2 a b ∧ PR2 d2 d3 b c) →

RComposePostRel R1 R2 PR1 PR2 d1 d3 a c.

Figure 5 Heterogeneous Event Relation Types

event that it is given. The evenodd function defines these computations mutually recursively293

using the mrec function.294

This section briefly introduces the classes of relations that we will need in order to reason295

about specification refinement in the presence of mutually recursive computations. The296

definition of eutt is parameterized by a return relation, making it easy to define a relation for297

ITrees that have identical tree structures up to Taus, with identical event nodes, but allows298

freedom to choose what conditions to enforce on return values. It is natural to consider299

generalizing eutt to allow variation not only in the return values but also in the event nodes.300

This kind of generalization is explored in Silver and Zdancewic [25]2. The generalized relation301

analyzes uninterpreted events, typically those representing recursive function calls, with302

respect to pre-conditions and post-conditions. We want to relate Vis nodes whose events303

satisfy the pre-condition and whose continuations are related given any inputs that satisfy304

the post-condition. This corresponds to assuming that two function calls return related305

outputs as long as they are given related inputs.306

Definitions of pre-condition and post-condition types are presented in Figure 5. Pre-307

conditions, Rel, are encoded as two-argument, heterogeneous relations, i.e. functions of type308

D→E→Prop, and utilize standard relational combinators like relational sums, sum_rel, and309

2 In Silver and Zdancewic [25] this relation is referred to as euttEv. It has since been renamed to rutt in
release branches of the Interaction Trees library.

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:9

relational composition, rcompose. Post-conditions, PostRel, are encoded as four-argument, de-310

pendent relations. In particular, forall (d:D) (e:E), encoded_by d → encoded_by e → Prop,311

where both D and E have an EncodingType instance. Intuitively, post-conditions are a function312

from events to relations over their response types. These post-conditions admit a standard313

definition of relational sums. For relational composition, in addition to requiring two PostRel314

relations, it also requires two standard relations, called coordinating relations. The full315

definition is presented in Figure 5.316

To relate four values d1:D1, d3:D3, a:encoded_by d1, c:encoded_by d3, we require that317

given any d2:D2 that is related by the coordinating relations to d1 and d3, there exists a318

b:encoded_by d2 such that both PR3 d1 d2 a b and PR4 d2 d3 b c.319

Later in the paper, we recover an eutt-like definition of specification refinement by320

specializing the event relations to be an appropriate form of equality. For Rel, this is precisely321

the equality relation. For PostRel, we define an inductive datatype that enforces equality on322

response values.323

324
Variant PostRelEq : PostRel E E :=325

PostRelEq_intro e a : PostRelEq e e a a.326327

3 Specification Extraction with Heapster328

This section introduces the Heapster tool for specification extraction. We present Heapster329

in order to provide context for the evaluation of this work in Section 6. In the evaluation, we330

demonstrate how effective ITree specifications can be when paired with a tool like Heapster.331

We start with a collection of low-level, heap manipulating C programs, use Heapster to332

produce equivalent functional programs, and finally use ITree specifications to specify and333

verify the output programs.334

There is a growing body of work [3, 9, 17, 18] based on the idea that programs that335

satisfy memory-safe type systems like Rust can be represented with equivalent functional336

programs. Rust’s pointer discipline, which ensures that all pointers in a program are either337

shared read or exclusive write, allows us to reason about the effects of pointer updates purely338

locally. This locality property can be used to define a pure functional model, referred to as a339

functional specification, of the behaviors of a program, which can in turn be used to verify340

properties of that program.341

Whereas some work uses this notion of a functional model implicitly, specification ex-342

traction is the idea that the functional model can be extracted automatically as an artifact343

that can be used for verification. Specification extraction separates verification into two344

phases: a type-checking phase, where the functions in a program are type-checked against345

user-specified memory-safe types; and a behavior verification phase, where the user verifies346

the specifications that are extracted from this type-checking process. The Heapster tool[9] is347

an implementation of the idea of specification extraction. Heapster provides a memory-safe,348

Rust-like type system for LLVM, along with a typechecker. Heapster also provides a transla-349

tion from well-typed LLVM programs to monadic, recursive, interactive programs, modeled350

with ITrees, that describe a behavioral model of the original program. This translation is351

inspired by the Curry-Howard isomorphism. Heapster types are essentially a form of logical352

propositions regarding the heap, so, by the Curry-Howard isomorphism, it is natural to view353

typing derivations, a form of proof, as a program. We give a brief overview of the Heapster354

type system and its specification extraction process in this section and illustrate it with an355

example.356

XX:10 Interaction Tree Specifications

Value Types T ::= bv n | llvmptr n | · · ·
Expressions e ::= n | llvmword e | · · ·
RW Modality rw ::= W | R
Permissions τ ::= ptr((rw, e) 7→ τ) | τ1 ∗ τ2 | τ1 ∨ τ2 | ∃x :T.τ | eq(e) | µX.τ | X | · · ·

Figure 6 An Abbreviated Grammar of the Heapster Type System

The Heapster type system is a permission type system. Typing assertions of the form357

x : τ mean that the current function holds permissions to perform actions allowed by τ358

on the value contained in variable x. The central permission construct of Heapster is the359

permission to read or write a pointer value. Like Rust, Heapster is an affine type system,360

meaning that the permissions held by a function can change at different points in the function.361

In particular, a command can consume a permission, preventing further commands from362

using that permission again. Also like Rust, Heapster allows read-only permissions to be363

duplicated, allowing multiple read-only pointers to the same address, but does not allow364

write permissions to be duplicated. This enforces the invariant that all pointers are either365

shared read or exclusive write, a powerful property for proving memory-safety.366

Figure 6 gives an abbreviated grammar for the Heapster type system. The value types T367

are inhabited by pieces of first order data. In particular, they contain the type bv n of n-bit368

bitvectors (i.e., n-bit binary values) and the type llvmptr n of n-bit LLVM values, among369

other value types not discussed here. Heapster uses the CompCert memory model [14],370

where LLVM values are either a word value or a pointer value represented as a pair of a371

memory region plus an offset in that region. The expressions e include numeric literals n and372

applications of the llvmword constructor of the LLVM value type to build an LLVM value373

from a word value.374

The first permission type in Figure 6, ptr((rw, e) 7→ τ), represents a permission to read375

or write (depending on rw) a pointer at offset e. Write permission always includes read376

permission. This permission also gives permission τ to whatever value is currently pointed377

to by the pointer with this permission. Permission type τ1 ∗ τ2 is the separating conjunction378

of τ1 and τ2, giving all of the permissions granted by τ1 or τ2, where τ1 and τ2 contain no379

overlapping permissions. Permission type τ1 ∨ τ2 is the disjunction of τ1 and τ2, which either380

grants permissions τ1 or τ2. The existential permission ∃x :T.τ gives permission τ for some381

value x of value type T . The equality permission eq(e) states that a value is known to be382

equal to an expression e. This can be viewed as a permission to assume the given value383

equals e. Finally, µX.τ is the least fixed-point permission, where permission variable X is384

bound in τ . This satisfies the fixed-point property, that µX.τ is equivalent to [µX.τ/X]τ .385

As a simple example, the user can define the Heapster type386

int64 = ∃x :bv 64.eq(llvmword x)387

This Heapster type describes an LLVM word value, i.e., an LLVM value that equals llvmword x388

for some bitvector x.389

As a slightly more involved example, consider the following definition of a linked list390

structure in C:391

392
typedef struct list64_t { int64_t data;393

struct list64_t *next; } list64_t ;394395

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:11

int64_t is_elem (int64_t x, list64_t *l) {
x : int64, l : list64⟨R⟩
x : int64, l :eq(llvmword 0) OR x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ list64⟨R⟩)
if (l == NULL) {

x : int64, l :eq(llvmword 0)
return 0;

} else {
x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ list64⟨R⟩)
if (l->data == x) { return 1; }
else {

list64_t *l2 = l->next;
x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ eq(l2)), l2 : list64⟨R⟩
return is_elem (x, l2);

}}}

Figure 7 Type-checking the is_elem Function Against Type x : int64, l : list64⟨R⟩ ⊸ r : int64

A C value of type list64_t* represents a list, where a NULL pointer represents the empty list396

and a non-NULL pointer to a list64_t struct represents a list whose head is the 64-integer397

contained in the data field and whose tail is given by the next field.398

The following Heapster type describes this linked list structure:399

list64⟨rw⟩ = µX.eq(llvmword 0) ∨ (ptr((rw, 0) 7→ int64) ∗ ptr((rw, 8) 7→ X))400

The list64⟨rw⟩ type is parameterized by a read-write modality rw, which says whether it401

describes a read-only or read-write pointer to a linked list. The permission states that the402

value it applies to either equals the NULL pointer, represented as llvmword 0, or points at403

offset 0 to a 64-bit integer and at offset 83 to an LLVM value that itself recursively satisfies404

the list64⟨rw⟩ permission. Note that the fact that it is a least fixed-point implicitly requires405

the list to be loop-free.406

Figure 7 illustrates the process of Heapster type-checking on a simple function is_elem407

that checks if 64-bit integer x is in the linked list l. Note that Heapster in fact operates408

on the LLVM code that results from compiling this C code, but the type-checking is easier409

to visualize on the C code rather than looking at its corresponding LLVM. Ignoring the410

Heapster types for the moment, which are displayed with a grey background in the figure,411

is_elem first checks if l is NULL, and if so returns 0 to indicate that the check has failed. If412

not, it checks if the head of the list in l->data equals x, and if so, returns 1. Otherwise, it413

recurses on the tail l->next.414

The Heapster permissions for this function are415

x : int64, l : list64⟨R⟩ ⊸ r : int64416

The lollipop symbol, ⊸, is used to write Heapster function types. This type means that417

input x is a 64-bit integer and l is a read-only linked list pointer and the return value r is a418

64-bit integer value.419

To type-check is_elem, Heapster starts by assuming the input types for the arguments.420

This is displayed in the first grey box of Figure 7. In order to type-check the NULL comparison421

3 We assume a 64-bit architecture, so offset 8 references the second value of a C struct.

XX:12 Interaction Tree Specifications

on l, Heapster must first unfold the recursive permission on l and then eliminate the resulting422

disjunctive permission. This latter step results in Heapster type-checking the remaining423

code twice, once for each branch of the disjunct. More specifically, the remaining code is424

type-checked once under the assumption that l equals NULL and once under the assumption425

that it points to a valid list64_t struct. In the first case, the NULL check is guaranteed426

to succeed, and so the if branch is taken with those permissions, while in the second, the427

NULL check is guaranteed to fail, so the else branch is taken.428

In the if branch, the value 0 is returned. Heapster determines that this value satisfies the429

required output permission int64. In the else branch, l->data is read, by dereferencing l430

at offset 0. This is allowed by the permissions on l at this point in the code. If the resulting431

value equals x, then 1 is returned, which also satisfies the output permission int64. Otherwise,432

l->next is read, by dereferencing l at offset 0, and the result is assigned to local variable433

l2. This assigns list64⟨R⟩ permission to l2. The permission on offset 8 of l is updated to434

indicate that the value currently stored there equals l2. The list64⟨R⟩ permission on l2 is435

then used to type-check the subsequent recursive call to is_elem.436

Once a function is type-checked, Heapster performs specification extraction to extract a437

pure functional specification of the function’s behavior. Specification extraction translates438

permission types to Coq types and typing derivations to Coq programs. The type translation439

is defined as follows:440

Jptr((rw, e) 7→ τ)K = JτK Jτ1 ∗ τ2K = Jτ1K ∗ Jτ2K
Jτ1 ∨ τ2K = Jτ1K + Jτ2K J∃x :T.τK = {x : JT K & JτK}

Jeq(e)K = unit JµX.τK = user-specified type A

isomorphic to J[µX.τ/X]τK

441

Pointer permissions ptr((rw, e) 7→ τ) are translated to the result of translating the permission442

τ of the value that is pointed to. This means that specification extraction erases pointer443

types, which are no longer needed in the resulting functional code. Conjuctive permissions are444

translated to pairs, disjunctive permissions are translated to sums, and existential permissions445

are translated to dependent pairs (using a straightforward translation JT K of value types that446

we omit here). The equality type eq(e) is translated to the Coq unit type unit, meaning that447

they contain no data in the extracted specifications. We already proved the equality in the448

typechecking phase, and we have no use for the particular equality proof the typechecker449

provided. To translate a least fixed-point type µX.τ , the user specifies a type that satisfies450

the fixed-point equation, meaning a pair of functions451

fold : J[µX.τ/X]τK → JµX.τK unfold : JµX.τK → J[µX.τ/X]τK452

that form an isomorphism.453

As an example, the translation of int64 is the Coq sigma type {x:bitvector 64 & unit}.454

Note that Heapster will in fact optimize away the unnecessary unit type, yielding the type455

bitvector 64. As a slightly more complex example, in order to translate the list64⟨rw⟩456

described above, the user must provide a type T that is isomorphic to the type457

458
unit + (bitvector 64 * T)459460

The simplest choice for T is the type list (bitvector 64). In this way, the imperative461

linked list data structure defined above in C is translated to the pure functional list type.462

Rather than defining the translation of Heapster typing derivations into Coq programs463

here, we illustrate the high-level concepts with our example and refer the interested reader464

to He et al. [9] for more detail. The translation of is_elem is given as a Coq specification465

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:13

Definition is_elem_spec : bitvector 64 * list (bitvector 64) →
itree_spec E (bitvector 64) :=

rec_fix_spec (fun rec ’(x,l) ⇒
either

unit (bitvector 64 * list (bitvector 64)) (* input types *)
(itree_spec _ (bitvector 64)) (* output type *)
(fun _ ⇒ Ret (intToBv 64 0)) (* nil case *)
(fun ’(hd,tl) ⇒ (* cons case *)

if bvEq 64 hd x then Ret (intToBv 64 1) (* return 1 *)
else rec (x,tl)) (* recursive call *)

(unfoldList l)). (* unfolded argument *)

Figure 8 Extracted Specification for is_elem

is_elem_spec in Figure 8. At the top level, this specification uses rec_fix_spec to define466

a recursive function to match the recursive definition of is_elem. This binds a local variable467

rec to be used for recursive calls to the specification.468

To understand the rest of the specification, we step through the Heapster type-checking469

depicted in Figure 7. The first step of that type assignment unfolds the permission type470

list64⟨W ⟩ on l. The corresponding portion of the specification is the call to unfoldList,471

which unfolds the input list l to a sum of a unit or the head and tail of the list. The next step472

of the Heapster type-checking is to eliminate the resulting disjunctive permission on l. The473

corresponding portion of the specification is a call to the either sum elimination function.474

In the left-hand case of the disjunctive elimination, the NULL test of the C program succeeds,475

and 0 is returned. Similarly, in the Coq specification, the nil case returns the 0 bitvector476

value.477

In the right-hand case of the disjunctive elimination of the Heapster type-checking, the478

NULL test fails, and so l is a valid pointer to a C struct with data and next fields. This is479

represented by the pattern-match on the cons case in the Coq specification, yielding variables480

hd and tl for the head and tail of the list. The body of this case then tests whether the head481

equals the input variable x, corresponding to the x==l->data expression in the C program.482

If so, then the bitvector value 1 is returned. Otherwise, the specification performs a recursive483

call, passing the same value for x and the tail of the input list for l.484

4 ITree Specifications and Refinement485

In this paper, we introduce a specialization of the ITree data type that encodes specifications486

over ITrees. To do this, we take some base event type family E, and extend it with constructors487

for universal and existential quantification. This is formalized in the following definition for488

SpecEvent.489

490
Inductive SpecEvent (E : Type) {̀EncodingType E} : Type :=491

| Spec_vis (e : E) : SpecEvent E492
| Spec_forall (A : type) : SpecEvent E493
| Spec_exists (A : type) : SpecEvent E494

.495496

The Spec_vis constructor allows you to embed a base event e : E into the type SpecEvent E.497

The Spec_forall constructor signifies universal quantification, and the Spec_exists constructor498

signifies existential quantification. For the purposes of specifying Heapster programs, we499

XX:14 Interaction Tree Specifications

only need to quantify over a fixed grammar of first order types4. This includes natural500

numbers, bit vectors, functions, products, logical propositions, and sums. We have omitted501

the definition of the particular fixed grammar of types used in this work for space.502

We define ITree specifications as the type of ITrees with a SpecEvent as the event type.503

504
Definition itree_spec (E : Type) {̀EncodingType E} (R : Type) :=505

itree (SpecEvent E) R.506507

Because ITree specifications are actually a special kind of ITree, they inherit all the508

useful metatheory and code defined for ITrees. In particular, we can reason about them509

equationally with eutt, and apply the monad functions to them.510

4.1 ITree Specification Refinement511

The notion that a program adheres to a specification is defined with the notion of refinement.512

Refinement is the main judgment involved in using ITree specifications, and is for instance513

the primary form of proof goal proved by the provided automation tool. Intuitively, the514

logical quantifier events mean that an ITree specification represents a set of computations. A515

fully concrete ITree specification, with no logical quantifier events, represents a singleton set,516

while a more abstract specification might represent a larger set. The refinement relation is517

then defined such that, if one ITree specification refines another, then the former represents a518

subset of the latter. So, for instance, if we prove that a concrete specification refines a more519

abstract specification, then we have shown that the singleton program in the set represented520

by the concrete specification satisfies the specification. Note that refinement is actually a521

coarser relation than subset; this is discussed later in Section 4.4.522

The ITree specification refinement relation is based on the idea of refinement of logical523

formulae with the eutt relation. As in a sequent calculus, we can eliminate quantifiers in our524

specification logic using quantifiers in the base logic, in this case Coq. Quantifiers on the525

right of a refinement get eliminated to the corresponding Coq quantifiers, while quantifiers on526

the left get eliminated to the dual of the corresponding Coq quantifier. This means that both527

a Spec_forall on the right and a Spec_exists on the left get eliminated to a Coq forall. And528

both a Spec_exists on the right and a Spec_forall on the left get eliminated to a Coq exists.529

ITree specifications form a lattice with refinement serving as the preorder, Spec_forall acting530

as the complete meet, and Spec_exists acting as the complete join. The portions of ITree531

specifications with computational content, including the Ret leaves, Spec_vis nodes, and silent532

Tau nodes, get compared as they do in the eutt relation.533

The ITree specification refinement relation shares many mechanical details with the534

eutt relation. Both are defined by taking the greatest fixed point of an inductively defined535

relation to get a mixture of inductive and coinductive properties. Both behave identically536

on Tau and Ret nodes. The refinement relation differs in its inductive rules for eliminating537

logical quantifiers, and in its usage of heterogeneous event relations to enforce pre- and post-538

conditions on Spec_vis events. These pre- and post- conditions are necessary in order to give539

the refinement relation the flexibility needed to state the reasoning principle for mrec. The540

initial inductively defined relation, refinesF, contains the following header code.541

542
Inductive refinesF543

(RPre : Rel E1 E2) (RPost : PostRel E1 E2) (RR : Rel R1 R2)544
(sim : itree_spec E1 R1 → itree_spec E2 R2 → Prop)545

: itree_spec E1 R1 → itree_spec E2 R2 → Prop :=546547

4 While we could quantify over Type in these definitions, this introduces universe level constraints that
we prefer to avoid

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:15

Much like in the definition of euttF, the sim argument represents corecursive calls of the548

refines relation, and the RR argument is the relation used for return. Unlike in euttF, refinesF549

takes in arguments for a PreRel and a PostRel. These arguments are included in order to550

represent pre- and post- conditions on mutually recursive function bodies.551

The refinesF relation has several constructors that work precisely the same as the552

corresponding euttF constructors. These constructors define the relation’s behavior on Ret553

and Tau nodes.554

555
| refines_Ret (r1 : R1) (r2 : R2) : RR r1 r2 → refinesF RPre RPost RR sim (Ret r1)556

(Ret r2)557
| refines_Tau (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2 R2) : sim phi1 phi2558

→559
refinesF RPre RPost RR sim (Tau phi1) (Tau phi2)560

| refines_TauL (t1 : itree_spec E1 R1) (t2 : itree_spec E2 R2) :561
refinesF RPre RPost RR sim t1 t2 → refinesF RPre RPost RR sim (Tau t1) t2562

| refines_TauR (t1 : itree_spec E1 R1) (t2 : itree_spec E2 R2) :563
refinesF RPre RPost RR sim t1 t2 → refinesF RPre RPost RR sim t1 (Tau t2)564565

The constructor dealing with Spec_vis nodes generalizes the constructor dealing with Vis566

nodes in euttF. This constructor relates Spec_vis nodes as long as two conditions hold on567

the events, e1 and e2, and the continuations, k1 and k2. The ITree specifications must satisfy568

the precondition, by having e1 and e2 satisfy RPre. And the ITree specifications must satisfy569

the post condition by having k1 a refine k2 b, whenever a and b are related by RPost e1 e2.570

571
| refines_Spec_vis (e1 : E1) (e2 : E2)572

(k1 : response_type e1 → itree_spec E1 R1) (k2 : response_type e2573
→ itree_spec E2 R2) :574

RPre e1 e2 → (forall a b, RPost e1 e2 a b → sim (k1 a) (k2 b)) →575
refinesF RPre RPost RR sim (Vis (Spec_vis e1) k1) (Vis (Spec_vis e2) k2)576577

The added complications of this rule allow us to reason about mutually recursive functions.578

It ensures that related function outputs assume that function calls with arguments related579

by the precondition return values related by the post condition when analyzing mutually580

recursive functions.581

Finally, we need constructors dealing with quantifier events. This definition uses only582

inductive constructors to eliminate quantifier events. We made this choice to avoid certain583

peculiar issues related to ITree specifications that consist of infinite trees of only quantifiers.584

Given coinductive constructors for quantifier events, we would be able to prove that such585

ITree specifications both refine and are refined by any other arbitrary ITree specification.586

That choice would cause certain ITree specifications to serve as both the top and bottom587

elements of the refinement order. This would serve as a counterexample to the transitivity of588

refinement, a desired property. So we chose to only use inductive constructors for quantifier589

events. This means that ITree specifications that consist of infinite trees of only quantifiers590

cannot be related by refinement to any other ITree specifications.591

Quantifiers on the right get directly translated into Coq level quantifiers.592

593
| refines_forallR (t : itree_spec E1 R1) (A:type) (k : response_type A →594

itree_spec E2 R2) :595
(forall a, refinesF RPre RPost RR sim t (k a)) →596
refinesF RPre RPost RR sim t (Vis (Spec_forall A) k)597

| refines_existsR (t : itree_spec E1 R1) (A : type) (k : response_type A →598
itree_spec E2 R2) :599

(exists a, refinesF RPre RPost RR sim t (k a)) →600
refinesF RPre RPost RR sim t (Vis (Spec_exists A) k)601602

Quantifiers on the left get translated into their dual quantifier at the Coq level. Eliminating603

a Spec_forall on the left gives you an exists. Eliminating a Spec_exists on the left gives you604

an forall.605

XX:16 Interaction Tree Specifications

Class CoveredType (A : Type) := {
encoding : type; surjection : response_type encoding → A;
surjection_correct : forall a : A, exists x, surjection x = a; }.

Definition forall_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_forall encoding)

(fun x ⇒ Ret (surjection x)).

Definition assume_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
forall_spec P;; Ret tt.

Definition exists_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_exists encoding)

(fun x ⇒ Ret (surjection x)).

Definition assert_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
exists_spec P;; Ret tt.

Figure 9 Basic Specifications

606
| refines_forallL (A : type) (k : response_type (Spec_forall A) → itree_spec E1 R1)607

(t : itree_spec E2 R2) :608
(exists a, refinesF RPre RPost RR sim (k a) t) →609
refinesF RPre RPost RR sim (Vis (Spec_forall A) k) t610

| refines_existsL (A : type) (k : response_type (Spec_exists A) → itree_spec E1 R1)611
(t : itree_spec E2 R2) :612

(forall a, refinesF RPre RPost RR sim (k a) t) →613
refinesF RPre RPost RR sim (Vis (Spec_exists A) k) t614615

This refinesF relation is used to define the refines relation as follows.616

617
Definition refines RPre RPost RR := gfp (refinesF RPre RPost RR).618619

4.2 Padded ITrees620

Useful refinement relations should respect the eutt relation. When using ITrees as a denota-621

tional semantics, eutt is the basis of any program equivalence relation. Equivalent programs622

and specifications should not be observationally different according to the refinement relation.623

However, the refines relation does not respect eutt624

We can easily demonstrate this with the following three ITree specifications.625

626
CoFixpoint spin : itree_spec E R := Tau spin.627
CoFixpoint phi1 : itree_spec E R := Vis (Spec_forall t) (fun _ ⇒ Tau (phi1)).628
CoFixpoint phi2 : itree_spec E R := Vis (Spec_forall t) (fun _ ⇒ phi2).629630

The spin specification represents a silently diverging computation. The phi1 specification631

is an infinite stream that alternates between Spec_forall nodes and Tau constructors. The632

phi2 specification is a similar ITree to phi1 that just lacks the Tau nodes. As these ITree633

specifications all diverge along all paths and lack any Spec_vis nodes, the RPre, RPost, and RR634

relations that we choose do not matter. Given any choice for those relations, spin refines635

phi1 as we can use the inductive refines_forallL rule to get rid of the Spec_forall nodes,636

allowing us to match Tau nodes on both trees and apply the coinductive refines_Tau rule.637

This process can be extended coinductively allowing us to construct the refinement proof.638

The phi1 ITree specification is eutt to phi2, as the only difference between the specifications639

is a single Tau node after every Vis_forall node. However, spin does not refine phi2, as there640

is no coinductive constructor that we can apply in order to write a proof for these divergent641

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:17

CoFixpoint interp_mrec_spec {R : Type}
(bodies : forall (d:D), (itree_spec (D + E)) (response_type d)) (t : itree_spec (D + E

) R) : itree_spec E R :=
match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec_spec bodies t)
| Vis (Spec_forall A) k ⇒ Vis (@Spec_forall E _ A) (fun x : response_type (Spec_forall

A) ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_exists A) k ⇒ Vis (@Spec_exists E _ A) (fun x ⇒ interp_mrec_spec bodies (

k x))
| Vis (Spec_vis (inr e)) k ⇒ Vis (Spec_vis e) (fun x ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_vis (inl d)) k ⇒ Tau (interp_mrec_spec bodies (bind (bodies d) k))
end.

Definition mrec_spec (bodies : forall (d:D), (itree_spec (D + E)) (response_type d)) (
init : D) :=

interp_mrec_spec bodies (bodies init).

Figure 10 mrec_spec Definition

ITree specifications. Problems like this arise with any ITree specifications that consist of642

infinitely many quantifier nodes with nothing between them.643

To fix this problem, we restrict our focus to a subset of ITrees that does not include ones644

like phi2. This is the set of padded ITrees, in which every Vis node must be immediately645

followed by a Tau. We formalize this with the coinductive padded predicate, whose definition646

has been omitted to save space. The refinement relation does not distinguish between different647

ITree specifications that are eutt to one another as long as they are padded. This means648

that can rewrite one ITree specification into another under a refinement according to eutt as649

long as both are padded.650

Furthermore, it is easy to take an arbitrary ITree, and turn it into a padded ITree. That651

is implemented by the pad function, which corecursively adds a Tau after every Vis node.652

From here, we can focus primarily on the following definition of padded_refines which pads653

out all ITree specifications before passing them to the refines relation.654

655
Definition padded_refines RPre RPost RR phi1 phi2 :=656

refines RPre RPost RR (pad phi1) (pad phi2).657658

In Figure 9, we introduce several simple ITree specifications that implement quantifi-659

cation over some types, and assumption and assertion of propositions. The forall_spec660

and exists_spec specifications rely on the CoveredType type class. A CoveredType instance661

for a type A contains an element of the restricted type grammar, encoding, whose inter-662

pretation corresponds to A. It also contains a valid surjection from the interpreted type663

response_type encoding to the original type A. In practice, we always instantiate this sur-664

jection with the identity function, but this type class formalization gives us the tools that665

we need without needing to do too much dependently typed programming. We can use666

forall_spec and exists_spec to define assumption and assertion, respectively, as Prop is part667

of the restricted grammar of types that SpecEvent can quantify over.668

4.3 Padded Refinement Meta Theory669

This subsection introduces some of the useful, verified metatheory we provide for ITree670

specifications in terms of padded_refines relation.671

We prove that we can compose refinement results with the monadic bind operator.672

673

XX:18 Interaction Tree Specifications

674
Theorem padded_refines_bind (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2 R2)675

(kphi1 : R1 → itree_spec E1 S1)676
(kphi2: R2 → itree_spec E2 S2) :677

padded_refines RPre RPost RR phi1 phi2 →678
(forall r1 r2, RR r1 r2 → padded_refines RPre RPost RS (kphi1 r1) (kphi2 r2)) →679
padded_refines RPre RPost RS (bind phi1 kphi1) (bind phi2 kphi2).680681

We prove that the padded_refines relation is transitive. To state the transitivity result in682

full generality, we need to use the composition relation introduced in Figure 5.683

684
Theorem padded_refines_trans : forall (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2685

R2) (phi3 : itree_spec E3 R3),686
padded_refines RPre1 RPost1 RR1 phi1 phi2 →687
padded_refines RPre2 RPost2 RR2 phi2 phi3 →688
padded_refines (RCompose RPre1 RPre2)689

(RComposePostRel RPre1 RPre2 RPost1 RPost2) (RCompose RR1 RR2) phi1 phi3.690691

We prove a reasoning principle for mutually recursive specifications as well. To do692

this, we first provide a slightly different definition of mutual recursion that handles the693

quantifier events correctly, defined in Figure 10. The key to proving refinements between694

mrec_spec specifications is to use the PreRel and PostRel relations to establish pre- and post-695

conditions on recursive calls. This involves choosing a PreRel over recursive call events,696

RPreInv, and a PostRel over recursive call events, RPostInv. Just like any form of invariants697

in formal verification, correctly choosing RPreInv and RPostInv requires striking a careful698

balance between choosing preconditions that are weak enough to hold, but strong enough to699

imply post conditions. The rule is expressed in the following code.700

701
Theorem padded_refines_mrec : forall (init1 : D1) (init2 : D2),702

RPreInv init1 init2 →703
(forall d1 d2, RPreInv d1 d2 →704

padded_refines (SumRel RPreInv RPre)705
(SumPostRel RPostInv RPost)706
(RPostInv d1 d2)707
(bodies1 d1) (bodies2 d2)) →708

padded_refines RPre RPost (RPostInv init1 init2)709
(mrec_spec bodies1 init1)710
(mrec_spec bodies2 init2).711712

The hypotheses in this theorem state that the initial recursive calls, init1 and init2, are in713

the precondition RPreInv, and that given any two recursive calls related by the precondition,714

d1 and d2, the recursive function bodies refine one another, where recursive calls are related715

by RPreInv and RPostInv and any other events are related by RPre and RPost. These reasoning716

principles allow us to prove complicated propositions involving the coinductively defined717

refinement relation without needing to perform direct coinduction.718

While we include several parameter relations with the definition of padded_refines, at the719

top level, we are typically interested in the case where all relations are set to equality. We720

call this relation strict refinement, and refer to it with the ≤ symbol.721

722
Notation "phi1 ’≤ ’ phi2" :=723

(padded_refines eq PostRelEq eq phi1 phi2).724725

Strict refinement is a transitive relation, and is strong enough to allow rewrites under the726

context of any other application of padded_refines.727

4.4 ITree specification Incompleteness728

One way to interpret ITree specifications is as sets of ITrees. The following code defines729

concrete ITree specifications, which correspond to executable ITrees.730

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:19

731
Variant concreteF {E R} {̀EncodingType E} (F : itree_spec E R → Prop) : itree_spec E732

R → Prop :=733
| concreteRet (r : R) : concreteF F (Ret r)734
| concreteTau (t : itree_spec E R) : F t → concreteF F (Tau t)735
| concreteVis (e : E) (k : response_type e → itree_spec E R) :736

(forall a, F (k a)) → concreteF F (Vis (Spec_vis e) k).737
Definition concrete {E R} {̀EncodingType E} : itree_spec E R → Prop := gfp concreteF.738

739740

A concrete ITree specification contains no quantifiers along any of its branches. We can map741

each ITree specification to the set of concrete ITree specifications that refine it.742

However, ITree specifications are not complete with respect to this interpretation. In743

particular, there are pairs of ITree specifications that represent equivalent sets of concrete744

ITree specifications, but do not refine one another. To see why, consider the following two745

ITree specification over an empty event signature voidE.746

747
Definition top1 : itree_spec voidE unit :=748

forall_spec void;; Ret tt.749750

751
Definition top2 : itree_spec voidE unit :=752

or_spec spin (Ret tt).753754

Both top1 and top2 are refined by all concrete ITree specifications of type itree_spec voidE unit.755

We can prove the refinement for top1 by applying the right forall rule, and reducing to a756

trivially satisfied proposition. For top2, we know that every concrete ITree specification of757

this type is eutt to either spin or Ret tt5. In each case, apply the right exists rule and758

choose the corresponding branch. However, given any relations RE, REAns, RR, we cannot759

prove padded_refines RE REAns RR top1 top2. This is because the only way to eliminate the760

Spec_forall on the left is to provide an element of the void type, which does not exist. This,761

along with the transitivity theorem, demonstrates that padded_refines is strictly weaker than762

the subset relation on sets of refining concrete ITree specification.763

5 Total Correctness Specifications764

This section discusses how to encode and prove simple pre- and post- condition specifications765

using ITree specifications. We also discuss how these definitions relate to our syntax-directed766

proof automation.767

Suppose we have a program that takes in values of type A and returns values of type B.768

Suppose we want to prove that if given an input that satisfies a precondition Pre : A → Prop,769

it will return a value that satisfies a postcondition Post : A → B → Prop without triggering770

any other events. The postcondition is a relation over A and B to allow the postcondition to771

depend on the initial provided value. We can encode these conditions in the following ITree772

specification.773

774
Definition total_spec : A → itree_spec E B :=775

fun a ⇒ assume_spec (Pre a);;776
b � exists_spec B;;777
assert_spec (Post a b);;778
Ret b.779780

The specification assumes that the input satisfies the precondition, existentially introduces781

an output value, asserts the post condition holds, and finally returns the output.782

5 Proving this fact requires a nonconstructive axiom like the Law of The Excluded Middle.

XX:20 Interaction Tree Specifications

Definition call_spec (a : A) : itree_spec (callE A B + E) B := trigger (inl (Call a)).

Definition calling’ {F} {̀EncodingType F} : (A → itree F B) →
(forall (c : callE A B) , itree F (response_type c)) :=

fun f c ⇒ f (unCall c).
Definition rec_spec (body : A → itree_spec (callE A B + E) B) (a : A) :

itree_spec E B :=
mrec_spec (calling’ body) (Call a).

Definition rec_fix_spec
(body : (A → itree_spec (callE A B + E) B) → A →
itree_spec (callE A B + E) B) :

A → itree_spec E B :=
rec_spec (body call_spec).

Figure 11 rec_fix_spec Definition

The total_spec specification can be effectively used compositionally. Consider a merge783

sort implementation, named sort, built on top of two recursively defined helper functions,784

one for splitting a list in half, named halve, and one for merging sorted lists, named merge.785

If we have already proven specializations of total_spec for these sub functions, it becomes786

easier to prove a specification for sort. Immediately we can replace these sub functions with787

their total correctness specification. Now consider how this total correctness specification788

will behave on the left side of a refinement. First, we can eliminate assume_spec (Pre a) as789

long as we can prove Pre a. Once we have done that, we get to universally introduce the790

output b, along with a proof that it satisfies the post condition. We are finally left with only791

Ret b with the assumption Post a b. This is a much simpler specification than our initial792

executable specification, which relied on several control flow operators including a recursive793

one.794

However, this easy to use specification is not easy to directly prove. The padded_refines_mrec795

rule gives us a sound reasoning principle for proving that a recursively defined function796

refines another recursively defined function, but it does not give any direct insight into how797

to prove any refinement that does not match that syntactic structure. To address this, we798

introduce a recursively defined version of total_spec_fix that we can apply our recursive799

reasoning principle on.800

First, we introduce a specialization of the mrec_spec combinator called rec_fix_spec,801

defined in Figure 11. The rec_fix_spec function has a type similar to that of a standard802

fixpoint operator. The first argument, body, is a function that takes in a type of recursive803

calls A → itree_spec (callE A B + E) B and an initial argument of type A and produces a804

result in terms of an ITree specification. It relies on the calling’ function to transform805

this value into a value of type forall (c:callE A B), itree_spec (callE A B + E) B which the806

mrec_spec function requires. From there it relies on the call_spec and rec_spec functions to807

wrap values of type A into Call events and trigger them.808

Given this recursion operator, we introduce an equivalent version of the total correctness809

specification, total_spec_fix.810

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:21

811
Definition total_spec_fix : A → itree_spec E B :=812

rec_fix_spec (fun rec a ⇒813
assume_spec (Pre a);;814
n � exists_spec nat;;815
trepeat n (816

a’ � exists_spec A;;817
assert_spec (Pre a’ ∧ Rdec a’ a);;818
rec a’819

);;820
b � exists_spec B;;821
assert_spec (Post a b);;822
Ret b).823824

This specification is reliant on the trepeat n t function, with simply binds an ITree, t, onto825

the end of itself n times. Note that total_spec_fix is defined recursively, and contains the826

elements of total_spec inside the recursive body. This makes it easier to relate to recursively827

defined functions. It begins by assuming the precondition and ends by introducing an output,828

asserting it satisfies the post condition, and returning the output. What comes between these829

familiar parts requires more explanation. Recall the discussion of the padded_refines_mrec830

rule. This reasoning principle lets you prove refinement between two recursively defined831

ITree specifications when a single layer of unfolding of each specification match up one to832

one with recursive calls.833

This means that to have a useful, general, and recursively defined version of total834

correctness specification we need to allow our recursive definition for total correctness835

specification to choose the number of recursive calls the function requires. For this reason,836

total_spec_fix existentially introduces a number n that specifies how many recursive calls are837

needed for one level of unfolding of the recursive function starting at a. The specification then838

includes n copies of a specification that existentially chooses a new argument a’, asserts a839

predicate holds on it, and then recursively calls the specification on this new argument. This840

asserted predicate contains two parts. First, we assert the precondition. A correct recursively841

defined function should not call itself on an invalid input if given a valid input. Second, we842

assert that a’ is less than a according to the relation Rdec. In order for total_spec_fix to843

actually be equivalent to total_spec, we need to assume that Rdec is well-founded6. The844

fact that Rdec is well-founded ensures that this specification contains no infinite chains of845

recursive calls. This allows us to prove that total_spec_fix refines total_spec as long as Rdec846

is well-founded.847

848
Theorem total_spec_fix_correct :849

well_founded Rdec → forall (a : A), total_spec_fix a ≤ total_spec a.850851

This theorem allows us to initially prove refinement specifications for recursive functions852

using the padded_refines_mrec rule with total_spec_fix and then replace it with the easier853

to work with total_spec.854

Both total_spec and total_spec_fix do not accept any ITree specifications that trigger855

any events. As a result, these total correctness specifications do not allow any exceptions to856

be raised, as you would expect with total correctness specifications.857

5.1 Demonstration858

To demonstrate how to work with total_spec, we describe how to verify the merge function,859

a key component of the merge sort algorithm. The merge function takes two sorted lists860

6 We use the Coq standard library’s definition of well-foundedness for this.

XX:22 Interaction Tree Specifications

Definition merge : (list nat * list nat)
→

itree_spec E (list nat) :=
rec_fix_spec (fun rec ’(l1,l2) ⇒

b1 � is_nil l1;;
b2 � is_nil l2;;
if b1 : bool then

Ret l2
else if b2 : bool then

Ret l1
else

x � head l1;;
tx � tail l1;;
y � head l2;;
ty � tail l2;;
if Nat.leb x y then

l � rec (tx, y::ty);;
Ret (x :: l)

else
l � rec (x::tx, ty);;
Ret (y::l)).

Definition merge_pre p :=
let ’(l1,l2) := p in
sorted l1 ∧ sorted l2.

Definition merge_post ’(l1,l2) l :=
sorted l ∧ Permutation l (l1 ++ l2).

Definition rdec_merge ’(l1,l2) ’(l3,l4) :=
length l1 < length l3 ∧

length l2 = length l4 ∨
length l1 = length l3 ∧

length l2 < length l4.

Theorem merge_correct : forall l1 l2,
merge (l1,l2) ≤ total_spec merge_pre

merge_post (l1,l2).

Figure 12 Merge implementation

and combines them into one larger sorted list which contains all the original elements. In861

Figure 12, we present a recursively defined implementation of merge along with relevant862

relations and the correctness theorem. The merge function is based on the standard list863

manipulating functions is_nil, head, and tail. We assume that the event type E contains864

some kind of error event which is emitted if head or tail is called on an empty list.7865

The merge function relies on its arguments being sorted and guarantees that its output866

is a single, sorted list that is a permutation of the concatenation of the original lists. We867

formalize these conditions in merge_pre and merge_post. To prove that merge is correct, we868

want to show that it refines the total specification built from its pre- and post- conditions.869

To accomplish this, it suffices to choose a well founded relation and prove that merge satisfies870

the resulting total_spec_fix specification. For this function, we use rdec_merge which ensures871

that the pairs of lists that we recursively call merge on either both decrease in length, or one872

decreases in length and the other has the same length.873

This leaves us with a refinement goal between two recursively defined specifications. We874

can then apply the padded_refines_mrec_spec theorem. For the relational precondition, we875

require that each pair of Call events is equal, and that Pre holds on the value contained876

within the call. For the relational postcondition, we require that equal Call events return877

equal values and that Post holds on them. Finally, we can prove that the body merge refines878

the body of total_spec_fix given these relation pre- and postconditions. We accomplish this879

by setting the existential variables on the right to make a single recursive call and give it the880

same argument as the recursive call that the body of merge makes.881

With this technique, we can verify the simple server introduced in Section 1. Recall that882

the server_impl program executes an infinite loop of receiving a list of numbers, sorting it,883

and sending it back as a message. To verify server_impl, we first verify halve, the remaining884

sub function of sort, using the same technique we used to prove the correctness of merge. We885

can then use these facts to prove the correctness of sort, and use the correctness of sort to886

7 We manage this assumption with a Coq type class called ReSum. For more information please read the
original ITrees paper[30] or inspect the associated artifact.

L. Silver, E. Westbrook, M. Yacavone, R. Scott XX:23

Function Name Description C LoC Proof LoC
mbox_free_chain Deallocate an mbox chain 11 18

mbox_len Compute the length in bytes of an mbox chain 9 40
mbox_concat Concatenates an mbox chain after a single mbox 5 18

mbox_concat_chains Concatenates two mbox chains 14 24
mbox_split_at Split an mbox chain into two chains 25 147

mbox_copy Copy a single mbox 13 74
mbox_copy_chain Copy an mbox chain 18 173

mbox_detach Detach the first mbox from a chain 18 18
mbox_detach_from_end Detach the first N bytes from an mbox chain 3 50

mbox_randomize Randomize the contents of an mbox 9 121
mbox_drop Remove bytes from the start of an mbox 12 23

Figure 13 Verified mbox functions

prove the correctness of server_impl.887

888
Theorem server_correct :889

(server_impl tt) ≤ (server_spec tt).890891

6 Automation and Evaluation892

6.1 Auto-active Verification893

A key goal of this work is to provide auto-active automation for ITree specifications refinement.894

To this effect, the current section presents an automated Coq tactic for proving refinement895

goals called prove_refinement. The prove_refinement tactic is designed to reduce proof goals896

about refinement of programs to proof goals about the data and assertions used in those897

programs. In the spirit of auto-active verification, this is done mostly automatically, but898

with the user guiding the automation in places where human insight is needed.899

The prove_refinement tactic defers to the user in two specific places. The first is in900

defining invariants for uses of the mrec recursive function combinator. The tool defers to the901

user to provide these invariants because inferring such invariants is undecidable. The second902

place where prove_refinement defers to the user is in proving non-refinement goals regarding903

first order data. The user can then apply other automated and/or manual proof techniques904

for the theories of the resulting proof goals.905

The prove_refinement tactic is defined using a collection of syntax-directed inference rules906

for proving refinement goals. The tactic proves refinement goals by iteratively choosing and907

applying a rule that matches the current goal and then proceeding to prove the antecedents.908

The prove_refinement tactic implements this strategy using the Coq hint database mechanism,909

which is already a user-extensible mechanism for proof automation using syntax-directed910

rules.911

We omit further implementation details both for space and because we do not claim the912

implementation of the prove_refinement tactic is novel or interesting. What is novel and913

interesting is that ITree specifications are designed in such a way that the straightforward914

implementation is able to achieve impressive results.915

XX:24 Interaction Tree Specifications

6.2 Evaluation916

He et al. [9] discussed using Heapster to verify the interface of mbox, a key datastructure in917

the implementation of the Encapsulating Security Payload (ESP) protocol of IPSec. The918

mbox datastructure represents a data packet as a linked list of fixed length arrays. He et al.919

[9] type checked and extracted functional specifications for several functions that manipulate920

mbox. Using ITree specifications, we specified and verified the behavior of these functional921

specifications using our auto-active verification tool. These functions are nontrivial, combining922

loops, recursion, and pointer manipulations. We present the list of verified functions in923

Figure 13.924

For each function, we include the function’s name, a description of its behavior, the925

number of lines of C code in its definition, and the number of lines of Coq code required926

to verify it. Lines of code are, of course, a very coarse metric for judging the complexity of927

code and proofs. However, these metrics do demonstrate the viability of this verification928

approach, showing that the remaining proof burden after the automation is of a reasonable929

size. The primary advantage this approach has over others is that the system reduces the930

verification down to facts about first order data. In this case, the data is a variant of the931

mbox datastructure written in Coq.932

7 Related Work933

The most closely related work is the work on Dijkstra monads [1, 16, 27, 28]. Dijkstra934

monads are a framework for writing specifications over arbitrary monads. This framework is935

the basis for verifying programs with effects in F⋆ [26], a programming language specifically936

designed for verification. Dijkstra monads arise from the interaction of three structures,937

a monad M, a specification monad W, and an effect observation function obs. The monad938

M represents computations to be verified, while the specification monad W is a monad for939

writing specifications about those computations. The effect observation function obs is a940

monad homomorphism that embeds computations in M to the most precise specification in941

W that they satisfy. The specification monad is also equipped with a refinement relation942

that expresses when one specification implies or is contained in another. As an example,943

Dijkstra monads arose out of generalizing the notion of weakest precondition computations,944

by viewing the weakest precondition transformer of a computation as itself being a stateful945

computation from postconditions to preconditions. The mapping from a computation to its946

weakest precondition transformer is then a monad homomorphism from the computation947

monad to the weakest precondition monad.948

ITree specifications in fact form a Dijkstra monad, where the type itree_spec E R acts949

as the specification monad and the corresponding ITree monad itree E R without logical950

quantifier events forms the computation monad. The effect observation homomorphism is then951

the natural embedding from the ITree type without quantifiers to the type with quantifiers.952

Most Dijkstra monads are specialized to act as either partial specification logics, which953

always accept any nonterminating computations, or total specification logics, which always954

reject any nonterminating computations. This means that most existing Dijkstra monads955

cannot reason about termination-sensitive properties like liveness. ITree specifications have956

the advantage of admitting specifications that accept particular divergent computations and957

not others. For example, an ITree specification could accept any computation that produces958

an infinite pattern of messages and responses from a server, and reject any computation that959

silently diverges.960

A notable exception is the work of Silver and Zdancewic [25], who also provided a Dijkstra961

REFERENCES XX:25

monad for ITrees. Much like ITree specifications it was capable of expressing specifications962

that allow for specifying infinite behavior. However, it did not provide reasoning principles963

for general recursion. The fact that ITree specifications represent specifications as syntax964

rather than semantics, as an ITree rather than some function relating ITrees to Prop, enabled965

us to write reasoning principles for general recursion and to build automation around the966

refinement rules.967

A lot of work on verifying monadic computations has been based on notions of equational968

reasoning. This was in fact a key part of Moggi’s original work [19]. Pitts [21] and Moggi [20]969

extend this approach be building general theories of an evaluation predicate for reasoning970

about return values of computations. This approach provides no explicit means to reason971

about the effects, however, and also has no direct way of handling non-termination in972

specifications such as the specifications needed for a server process. Plotkin and Pretnar [22]973

further extend this approach with a general-purpose logic for algebraic effects, allowing it to974

reason about the effects themselves and not just return values. This approach cannot handle975

general Hoare logic assertions, however, and although there is a high-level discussion about976

handling recursion, it is not clear how well it works for those sorts of specifications. Rauch977

et al. [23] extends monads with native exceptions and non-termination and provides a logic978

for these monads. Much like in our work, monads in Rauch et al. [23] can be annotated with979

assertions. However, it restricts the language of assertions, and does not provide assumptions,980

or general universal or existential quantification. It also handles only tail recursive programs,981

and not general, mutual recursion.982

One particularly effective approach in the space of equational reasoning was that of983

Gibbons and Hinze [8]. This work showed how to use the specialized monad laws of each984

sort of effect in a computation to define rewrite rules for simplifying and reasoning about985

effectful computations, and then demonstrated that this approach is both straightforward to986

use and powerful enough to verify a number of small but interesting programs.987

The ultimate goal of this work is to provide techniques for auto-active verification of988

imperative code. Therefore, it is natural to compare this work to semi-automated separation989

logic tools like VST-Floyd[2] and CFML[6]. We argue this approach has two major advantages990

over these related techniques. First, while VST-Floyd is specialized to C and CFML is991

specialized to Caml, ITree specifications can be used to specify any programs with an992

ITrees based semantics. When paired with Heapster techniques, ITree specifications can be993

used to specify a wide array of imperative, heap-manipulating languages with a memory-safe994

type system. In particular, the Heapster type system is closely related to the Rust type995

system, meaning these techniques should be adaptable to specify and verify Rust code.996

Second, the Heapster types are able to perform all the separation logic specific reasoning,997

freeing the verifier to focus on the underlying mathematical structures.998

8 Conclusion999

This paper introduces ITree specifications along with verified metatheory and proof automa-1000

tion for reasoning about them. ITree specifications are a specialization of ITrees with a1001

general notion of specification refinement. Unlike previous work developing specifications1002

for ITrees, this paper provides techniques for working with the general recursion operator1003

provided by the ITrees library. Finally, this paper demonstrates the effectiveness of its1004

techniques by applying them on a collection of realistic C functions.1005

XX:26 REFERENCES

References1006

1 Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martinez, Gordon Plotkin, Jonathan1007

Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for free. In Proceedings of1008

the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL),1009

2017.1010

2 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gor-1011

don Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Compilers.1012

Cambridge University Press, USA, 2014. ISBN 110704801X.1013

3 Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. Leveraging1014

rust types for modular specification and verification. In Proceedings of the ACM SIGPLAN1015

International Conference on Object-Oriented Programming, Systems, Languages, and1016

Applications (OOPSLA), 2019.1017

4 Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model1018

checking without bdds. In Proceedings of the 5th International Conference on Tools and1019

Algorithms for the Construction and Analysis of Systems (TACAS), 1999.1020

5 Aaron R. Bradley. Sat-based model checking without unrolling. In Proceedings of the 12th1021

International Conference on Verification, Model Checking, and Abstract Interpretation1022

(VMCAI), 2011.1023

6 Arthur Charguéraud. Characteristic formulae for the verification of imperative programs.1024

In Proceedings of the 16th ACM SIGPLAN International Conference on Functional1025

Programming, ICFP ’11, page 418–430, New York, NY, USA, 2011. Association for1026

Computing Machinery. ISBN 9781450308656. doi: 10.1145/2034773.2034828. URL1027

https://doi.org/10.1145/2034773.2034828.1028

7 Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman, Colm1029

MacCárthaigh, Stephen Magill, Eric Mertens, Eric Mullen, Serdar Tasiran, Aaron Tomb,1030

and Eddy Westbrook. Continuous formal verification of amazon s2n. In Proceedings of1031

the 30th International Conference on Computer Aided Verification (CAV), 2018.1032

8 Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning.1033

In Proceedings of the 16th ACM SIGPLAN international conference on Functional1034

programming (ICFP), 2011.1035

9 Paul He, Edwin Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer,1036

Andrei Stefanescu, Aaron Tomb, Adam Wick, Matthew Yacavone, and Steve Zdancewic.1037

A type system for extracting functional specifications from memory-safe imperative1038

programs. In Proceedings of the ACM SIGPLAN International Conference on Object-1039

Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2021.1040

10 Son Ho and Jonathan Protzenko. Aeneas: Rust verification by functional translation.1041

Proc. ACM Program. Lang., 6(ICFP), aug 2022. doi: 10.1145/3547647. URL https:1042

//doi.org/10.1145/3547647.1043

11 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of1044

parameterization in coinductive proof. In Proceedings of the 40th Annual ACM1045

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2013. doi:1046

10.1145/2429069.2429093.1047

12 Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state.1048

In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st1049

ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara,1050

Japan, September 18-22, 2016, pages 256–269. ACM, 2016. ISBN 978-1-4503-4219-3. doi:1051

10.1145/2951913.2951943. URL http://doi.acm.org/10.1145/2951913.2951943.1052

https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
http://doi.acm.org/10.1145/2951913.2951943

REFERENCES XX:27

13 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip1053

Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas1054

Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification of an os kernel. In1055

Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,1056

SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3.1057

doi: 10.1145/1629575.1629596. URL http://doi.acm.org/10.1145/1629575.1629596.1058

14 Xavier Leroy and Sandrine Blazy. Formal verification of a c-like memory model and its1059

uses for verifying program transformations. J. Autom. Reason., 41(1):1–31, jul 2008.1060

ISSN 0168-7433. doi: 10.1007/s10817-008-9099-0. URL https://doi.org/10.1007/1061

s10817-008-9099-0.1062

15 Giuliano Losa and Mike Dodds. On the Formal Verification of the Stellar Consensus1063

Protocol. In 2nd Workshop on Formal Methods for Blockchains (FMBC 2020), 2020.1064

16 Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel1065

Rivas, and Éric Tanter. Dijkstra monads for all. Proc. ACM Program. Lang., 3(ICFP),1066

July 2019. doi: 10.1145/3341708. URL https://doi.org/10.1145/3341708.1067

17 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. Rusthorn: Chc-based1068

verification for rust programs. In Proceedings of the 29th European Symposium on1069

Programming (ESOP), 2020.1070

18 Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. Rusthorn-1071

belt: A semantic foundation for functional verification of rust programs with unsafe code.1072

In Proceedings of the 43rd ACM SIGPLAN Conference on Programming Language Design1073

and Implementation, 2022.1074

19 Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the1075

Fourth Annual Symposium on Logic in Computer Science (LICS), 1989.1076

20 Eugenio Moggi. A semantics for evaluation logic. Fundamenta Informaticae, 22(1), 1989.1077

21 Andrew M. Pitts. Evaluation logic. In Proceedings of the IV Higher Order Workshop,1078

1990.1079

22 Gordon Plotkin and Matija Pretnar. A logic for algebraic effects. In Proceedings of the1080

23rd Annual IEEE Symposium on Logic in Computer Science (LICS), 2008.1081

23 Christoph Rauch, Sergey Goncharov, and Lutz Schröder. Generic hoare logic for order-1082

enriched effects with exceptions. In Phillip James and Markus Roggenbach, editors,1083

Recent Trends in Algebraic Development Techniques, pages 208–222, Cham, 2017. Springer1084

International Publishing. ISBN 978-3-319-72044-9.1085

24 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification of1086

fine-grained concurrent programs. In Proceedings of the 36th ACM SIGPLAN Conference1087

on Programming Language Design and Implementation, PLDI ’15, page 77–87, New1088

York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334686. doi:1089

10.1145/2737924.2737964. URL https://doi.org/10.1145/2737924.2737964.1090

25 Lucas Silver and Steve Zdancewic. Dijkstra monads forever: Termination-sensitive1091

specifications for interaction trees. Proc. ACM Program. Lang., 5(POPL), jan 2021. doi:1092

10.1145/3434307. URL https://doi.org/10.1145/3434307.1093

26 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bharga-1094

van, and Jean Yang. Secure distributed programming with value-dependent types. In1095

Proceeding of the 16th ACM SIGPLAN international conference on Functional Program-1096

ming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages 266–278, 2011. doi:1097

10.1145/2034773.2034811. URL http://doi.acm.org/10.1145/2034773.2034811.1098

27 Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits.1099

Verifying higher-order programs with the dijkstra monad. In ACM SIGPLAN Conference1100

http://doi.acm.org/10.1145/1629575.1629596
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3341708
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/3434307
http://doi.acm.org/10.1145/2034773.2034811

XX:28 REFERENCES

on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,1101

June 16-19, 2013, pages 387–398, 2013. doi: 10.1145/2491956.2491978. URL http:1102

//doi.acm.org/10.1145/2491956.2491978.1103

28 Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,1104

Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf1105

Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent types1106

and multi-monadic effects in f*. In Proceedings of the 43rd Annual ACM SIGPLAN-1107

SIGACT Symposium on Principles of Programming Languages, POPL ’16, page 256–270,1108

New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450335492.1109

doi: 10.1145/2837614.2837655. URL https://doi.org/10.1145/2837614.2837655.1110

29 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C.1111

Pierce, and Steve Zdancewic. Interaction trees: Representing recursive and impure1112

programs in coq. Proc. ACM Program. Lang., 4(POPL), dec 2019. doi: 10.1145/3371119.1113

URL https://doi.org/10.1145/3371119.1114

30 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C.1115

Pierce, and Steve Zdancewic. Interaction trees: Representing recursive and impure1116

programs in coq. Proceedings of the ACM on Programming Languages, 4(POPL), January1117

2020. doi: 10.1145/3371119.1118

http://doi.acm.org/10.1145/2491956.2491978
http://doi.acm.org/10.1145/2491956.2491978
http://doi.acm.org/10.1145/2491956.2491978
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3371119

	1 Introduction
	2 Background
	2.1 Equivalence up to Tau
	2.2 Mutually Recursive Computations

	3 Specification Extraction with Heapster
	4 ITree Specifications and Refinement
	4.1 ITree Specification Refinement
	4.2 Padded ITrees
	4.3 Padded Refinement Meta Theory
	4.4 ITree specification Incompleteness

	5 Total Correctness Specifications
	5.1 Demonstration

	6 Automation and Evaluation
	6.1 Auto-active Verification
	6.2 Evaluation

	7 Related Work
	8 Conclusion

