
Semantics for Noninterference with Interaction1

Trees2

Lucas Silver #3

University of Pennsylvania, USA4

Paul He # �5

University of Pennsylvania, USA6

Ethan Cecchetti # �7

University of Maryland, USA8

University of Wisconsin – Madison, USA9

Andrew K. Hirsch # �10

State University of New York at Buffalo, USA11

Steve Zdancewic # �12

University of Pennsylvania, USA13

Abstract14

Noninterference is the strong information-security property that a program does not leak secrets15

through publicly-visible behavior. In the presence of effects such as nontermination, state, and16

exceptions, reasoning about noninterference quickly becomes subtle. We advocate using interaction17

trees (ITrees) to provide compositional mechanized proofs of noninterference for multi-language,18

effectful, nonterminating programs, while retaining executability of the semantics. We develop19

important foundations for security analysis with ITrees: two indistinguishability relations, leading to20

two standard notions of noninterference with adversaries of different strength, along with metatheory21

libraries for reasoning about each. We demonstrate the utility of our results using a simple imperative22

language with embedded assembly, along with a compiler into that assembly language.23

2012 ACM Subject Classification Theory of computation → Denotational semantics; Security and24

privacy → Logic and verification; Security and privacy → Information flow control25

Keywords and phrases verification, information-flow, denotational semantics, monads26

Digital Object Identifier 10.4230/LIPIcs...27

1 Introduction28

Information-flow guarantees state that programs respect the information-security specifica-29

tions of their inputs and outputs. The most basic is noninterference, which states that secret30

data cannot influence publicly observable behavior. There are many languages designed to31

enforce information-flow properties, guaranteeing that programs treat their sensitive inputs32

correctly [e.g., 29, 40, 41]. The importance of information-security properties has increasingly33

led to verification efforts for such languages and systems [7, 21]. These efforts, however, are34

mostly limited to source-level guarantees for a single language. For security guarantees to be35

meaningful, the entire language toolchain must support them.36

One of the key decisions when formalizing any effectful, possibly-nonterminating language37

is the choice of representation. Much prior work focuses on operational semantics defined38

as a relation on syntax, or on trace models defined as a predicate over lists or streams of39

observations [22, 26, 37]. However, such definitions often require auxiliary constructs, like40

program counters or evaluation contexts, making proofs brittle and hard to compose. These41

concerns are particularly pronounced for information-security properties, which often rely on42

subtle definitions with delicate correctness proofs. The complexity of multi-language settings43

further complicates the already-fraught choice of language representation.44

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lucsil@seas.upenn.edu
mailto:paulhe@cis.upenn.edu
https://orcid.org/0000-0002-6305-4335
mailto:cecchetti@wisc.edu
https://orcid.org/0000-0001-7900-8328
mailto:akhirsch@buffalo.edu
https://orcid.org/0000-0003-2518-614X
mailto:stevez@cis.upenn.edu
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Semantics for Noninterference with Interaction Trees

Interaction Trees (ITrees) [58, 61] provide an alternative: a runnable denotational seman-45

tics for effectful, potentially-nonterminating programs, with a library implemented in Coq [30].46

Intuitively, ITrees represent programs as interactions with the environment. At a technical47

level, ITrees are a coinductive data type based on free monads [51]. Programs are either done48

and provide a return value, emit an event to the environment and continue once the environ-49

ment provides a response, or produce a “silent event,” allowing ITrees to represent (silently)50

diverging programs in strongly normalizing metalanguages. By interpreting the events into51

a suitable monad [32], ITrees can express the semantics of diverse programming-language52

features, and thus many different languages. This versatility makes ITrees well-suited to53

cross-language reasoning [58] and reasoning about real-world toolchains [25, 61].54

ITrees come equipped with a notion of program equivalence based on weak bisimilarity,55

which considers programs equivalent if they differ only by a finite number of silent steps.56

Properties like noninterference, however, require more nuanced reasoning because some57

program behaviors are visible to an attacker while others are not.58

This work introduces two indistinguishability relations for ITrees to capture these intu-59

itions: one progress-sensitive and one progress-insensitive. These definitions—motivated by60

corresponding notions found in the information-flow security literature [46, 56, 57]—adapt61

the notion of bisimilarity to account for what information is available to an adversary. They62

require delicate treatment of the interplay between nontermination and the interactions of63

a program with its environment. Progress-sensitive noninterference is a very strong guar-64

antee, but is overly restrictive for many real-world programming tasks. For instance, it65

generally disallows loops that depend on secret data. Progress-insensitive noninterference is66

less demanding, but provides considerably less security [6].67

While the definitions of ITrees and our indistinguishability relations are coinductive, we68

provide metatheoretic results allowing a proof engineer to reason with these relations without69

manual coinduction. These results further connect these indistinguishability relations to the70

standard ITrees notion of bisimilarity, providing compatability with existing results.71

We validate this design with a simple toolchain for cross-language noninterference. The72

toolchain consists of a simple imperative language, Imp, and a simple assembly language,73

Asm. There are two type systems for Imp and a compiler from Imp to Asm. One type74

system enforces progress-sensitive noninterference and the other enforces progress-insensitive75

noninterference. In addition to standard information flow typing rules, the type systems76

allow for semantic typing: any semantically secure program can be considered well typed.77

This flexibility allows Imp to support embedded Asm blocks without giving a type system to78

Asm, and it demonstrates the powerful semantic composition of our security reasoning. We79

further verify that our Imp-to-Asm compiler preserves both kinds of noninterference. This80

preservation relies only on semantic security, not the type system, which is required to allow81

for security preservation with semantic typing.82

To further demonstrate the utility of our approach, we include exceptions in Imp. Ex-83

ceptions show how our indistinguishability semantics interact with effects that may alter84

control flow, which are a particular challenge for information-flow reasoning. This inclusion85

also requires an extension to the ITrees library that is orthogonal to the security extensions.86

Section 2 reviews background on information-flow control and ITrees, the Imp language,87

and its semantics defined with ITrees. The contributions of this paper are as follows.88

Section 3 extends the ITrees library with exceptions and exception handlers.89

Section 4 adapts ITrees metatheory to reason about security guarantees, defining progress-90

sensitive and progress-insensitive notions of indistinguishability and noninterference.91

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:3

Section 5 uses ITrees and the new relations to prove the security of two standard92

information-flow type systems for Imp.93

Section 6 extends Xia et al.’s [58] simple compiler from Imp to Asm with exceptions and94

print effects. We then show that Xia et al.’s notion of compiler correctness immediately95

implies security preservation using only the metatheory of indistinguishability.96

Finally, Section 7 discusses related work and Section 8 concludes. All definitions and theorems97

described in this paper have been formalized in Coq.198

2 Background99

We now review background on information-flow control, interaction trees, and Imp.100

2.1 Information-Flow Control101

We represent information-security policies using a set of information-flow labels L that must102

form a preorder. That is, there is a reflexive, transitive relation ⊑ (pronounced “flows to”) on103

labels where ℓ ⊑ ℓ′ means that any adversary who can see information with label ℓ′ can also104

see information with label ℓ. We also identify adversaries with labels. An adversary at label ℓ105

can only see information with labels that flow to ℓ. Information-flow systems use a variety of106

orderings, including simply “public” and “secret,” subsets of permissions [63], lattices over107

principals making up a system [5, 34, 50], and orderings based on logical implication [40].108

The classic information-flow security policy is noninterference: if an adversary cannot109

distinguish a program’s inputs, they should not be able to distinguish its outputs or its110

interactions with the environment. Because information-flow labels determine which data an111

adversary can observe, a semantic version of noninterference requires a semantic model of112

information-flow labels. Sabelfeld and Sands [47] suggest modeling labels as partial equivalence113

relations (PERs) on terms. PERs are relations that are symmetric and transitive, but not114

necessarily reflexive. PERs act like equivalence relations on a subset of their domain. For115

information-flow security, such PERs are called “indistinguishability relations.”116

This model further asserts that indistinguishable programs take indistinguishable inputs117

to indistinguishable outputs. That is, related programs, applied to related inputs, produce118

related computations. This closure property allows a semantic version of noninterference to119

be defined as self-relation of a program. A program is related to itself—and noninterfering—if120

and only if, for every adversary, given any two inputs an adversary cannot distinguish, it121

produces two computations that adversary cannot distinguish.122

As we will see in Section 4, indistinguishability gives a natural way to reason about123

noninterference using ITrees. Requiring every indistinguishability relation to be a PER,124

however, corresponds to strong assumptions about the adversary. In particular, it requires that125

the adversary be able to distinguish a program that silently diverges from a program that takes126

arbitrarily long to produce an observable interaction with its environment. Noninterference127

against this strong adversary is known as progress-sensitive noninterference. While this128

strength provides more security, enforcing progress-sensitive noninterference results in a129

prohibitively expensive programming model [Section 5.1, 46, 56]. To allow for enforcement of130

progress-insensitive noninterference, the indistinguishability model is often relaxed to not131

require transitivity [16, 43, 55].132

1 For reviewers: Our Coq development is available as part of the review process, and we intend to
submit (a better-documented version of) it for artifact evaluation should the paper be accepted.

XX:4 Semantics for Noninterference with Interaction Trees

2.2 Basic Definitions for Interaction Trees133

Interaction Trees (ITrees) [58] are a coinductive data structure designed to give denotational134

semantics to effectful, possibly divergent programs. ITrees model such computations as135

branching trees where internal nodes represent events, or interactions with the environment,136

with a branch for each different possible response from the environment. The use of coinduction137

means that these trees can be infinite, modeling diverging programs. Because ITrees give a138

denotational semantics to programs, they are a language-agnostic view of programs. Thus,139

we can use ITrees as a common domain for multiple languages, allowing us to reason about140

how those languages interact.141

The type of an ITree includes an event signature E and a result type R. The result type142

simply specifies the output type if the program halts normally. The event signature E defines143

the interface by which the environment interacts with the program. E : Type → Type is a144

type transformer that takes an answer type A and returns E A, the type of an event that145

produces a value of type A. For example, the event signature, stateE, modeling a state effect146

might have two constructors: get and set. A get event represents a state access that returns147

a number, so it has type stateE(N). A set event represents an assignment that need not148

return any useful information, so it has type stateE(unit).149

ITrees have the following constructors.

r : R

ret r : itree E R
−−−−−−−−−−−−−−−−−

t : itree E R

τ · t : itree E R
================

e : E A k : A→ itree E R

Vis e k : itree E R
==============================

In this paper, a double line in an inference rule means that it should be interpreted coinduc-150

tively, while a single line is interpreted inductively, as usual. This definition, then, is a fully151

coinductive definition, since the only single-line definition is a base case.152

The ITree ret r represents a program terminating with a value r. The ITree τ ·t represents153

a silent internal step of computation, followed by the ITree t. Because ITrees are a coinductive154

data structure, we can chain an infinite number of τ ’s together in the ITree tspin = τ · tspin.155

Here, tspin models a divergent program that causes no side effects. Finally, the ITree Vis e k156

represents a visible event e of type E A for some answer type A, followed by a continuation157

k that takes an answer of type A and produces an itree E R. Intuitively, k defines how the158

computation proceeds after the environment handles event e. Since k’s behavior may differ159

depending on the value returned by e, there is one possible computational “branch” for each160

value of type A. In this view, ITrees are potentially infinitely long trees.161

For any event signature E, itree E forms a monad [32]. The unit operation is provided162

by the ret constructor, and the bind operation, written m≫= k, is defined as a corecursive163

function which replaces every ret r in m with k r. We will also use the common monad164

notation x ← t1 ; t2 in place of t1 ≫= λx.t2. ITrees satisfy the monad laws up to strong165

bisimulation, which we use as an equivalence on ITrees since they are potentially infinite166

objects. Two ITrees are strongly bisimilar when they have exactly the same shape (including167

the values returned at corresponding leaves).168

In combination with the monad operations, another useful operation is trigger, which
lifts an event into an ITree that immediately returns the environment’s response:

trigger e = Vis e ret

ITrees also support an iteration operation:

iter : ∀A, B.(A→ itree E (A⊕B))→ A→ itree E B

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:5

Expressions e ::= x | n | e + e | e− e | e ∗ e

Commands c ::= skip | x := e | c1 ; c2 | while (e) do {c}
| if (e) then {c1} else {c2} | print(ℓ, e) | inline {a}

Inlined Assembly a ::= (see Section 6)

Figure 1 Imp syntax, where x is a variable, n is a number, and ℓ is an information-flow label.

Intuitively, iter body a acts as a do-while loop, running body on input a and either continuing169

with a new value of type A, or stopping with a final value of type B.170

2.3 Semantics for Imp with Security Labels171

To explore how ITrees can help us verify noninterference properties, we will use a simple172

imperative language, Imp, as a running example and case study. Conveniently, previous173

work on both ITrees [58] and noninterference [46] use Imp as case studies, ensuring that the174

connection we make corresponds with existing tools and techniques in both domains. Our175

version of Imp, presented in Figure 1, includes features not present in the works cited above:176

the ability to print expressions to one of several output streams, and the ability to inline177

code from a simple assembly language. Section 3 will further extend Imp to allow throwing178

and catching exceptions. The output streams are indexed by information-flow labels, and179

we think of stream ℓ as being visible to any adversary at or above ℓ, but no others. Thus,180

printing secret information to a public stream leaks data.181

The assembly language, Asm, is a simplification of standard assembly language. We allow182

an infinite number of registers, and we assume that the heap is addressed by variables, as183

in Imp. We also do not allow dynamic jumps, only jumps to fixed addresses. Beyond those184

simplifications, we include features similar to those in Imp: we allow printing to streams185

indexed by information-flow labels and, as we show later, the Asm semantics can model186

uncaught exceptions, both features necessary for correct compilation of Imp code. We discuss187

the syntax and semantics of Asm in more detail in Section 6.188

As in languages like C, embedding Asm in Imp allows developers more control over the
performance of their code. For instance, the simple compiler in Section 6 would compile the
Imp program y := x + 1 ; z := x + 2 to an Asm program that loads data from x into a register
twice, once for each assignment. Since Loads are relatively expensive, when the Imp code
above appears in a critical loop a developer might replace it with the following Asm code:

Start : load $0 ← x

add $0 ← $0, 1
store y ← $0
add $0 ← $0, 1
store z ← $0
jmp Exit

This program starts from the Start label, and terminates the program by jumping to the189

Exit label. Unlike our compiler’s output, this custom Asm only has one load instruction.190

Giving semantics to Imp using ITrees requires defining events representing possible
interactions between an Imp program and its environment. Imp has three types of events:
stateE for the heap state, regE for the register state, and printE for output. There are two
constructors for stateE events, one for reading and one for writing.

get : var→ stateE(N) set : var→ N→ stateE(unit)

XX:6 Semantics for Noninterference with Interaction Trees

JeKe : itree progE N

JxKe = trigger get(x)
JnKe = ret n

Je1 + e2Ke = x← Je1Ke ;
y ← Je2Ke ;
ret (x + y)

JcKc : itree progE unit

JskipKc = ret ()
Jx := eKc = n← JeKe ; trigger set(x, n)

Jprint(ℓ, e)Kc = n← JeKe ; trigger print(ℓ, n)
Jc1 ; c2Kc = Jc1Kc ; Jc2Kc

u

v
if e

then {c1}
else {c2}

}

~

c

= n← JeKe ;
if n ̸= 0
then Jc1Kc

else Jc2Kc

Jwhile (e) do {c}Kc = iter

λ_. n← JeKe ;

if n ̸= 0
then (JcKc ; ret inl())
else ret inr()

 ()

Jinline {a}Kc = JaKasm

Figure 2 Imp denotational semantics

The regE events require another two constructors, again one for reading and one for writing.

getreg : reg → regE(N) setreg : reg → N→ regE(unit)

There is only one constructor for printE events: print : L → N→ printE(unit).191

As Imp programs can produce all three types of events, we combine them with disjoint192

union. The resulting event type for Imp programs is progE = regE⊕ stateE⊕ printE. For193

notational simplicity, we elide the injection operator when using these compound events.194

Figure 2 presents the denotation of Imp using these events. Note that there are two195

denotation functions: J·Ke for expression and J·Kc for commands. As expressions produce196

numbers and commands have no output, J·Ke produces computations of type itree progE N,197

while J·Kc produces computations of type itree progE unit. The function J·Kasm gives ITree-198

based semantics to Asm. Its full definition can be found in the work of Xia et al. [58]; we199

discuss the modifications necessary to accommodate our changes in Section 6.200

The denotation for expressions is fairly straightforward, and, importantly for proofs,201

completely compositional—an expression’s meaning is constructed from that of its subexpres-202

sions. The denotation of a variable is a get event, a literal n becomes ret n, and arithmetic203

expressions simply denote each argument and return the resulting value using bind.204

Most commands are equally simple and compositional. skip is an immediate ret. Both205

assignment and print first denote the argument and then bind the result into the appropriate206

event. Sequencing is implemented with bind on a unit value that we elide. Conditionals first207

denote the condition, and then return the denotation of either the left or right command208

depending on the result.209

Loops are more complex and make use of the iter combinator. The combinator expects210

a function that returns itree progE (unit ⊕ unit), where a left value indicates “continue”211

and a right value indicates that the loop should terminate. The function given to iter first212

computes the value of the loop’s guard expression. If the value is not zero, it sequences213

a single denotation of the loop body with ret inl(), indicating the loop should continue.214

Otherwise, if the value is zero, it signals to halt the iteration with ret inr().215

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:7

2.4 Handlers and Interpretations216

The events in an ITree can be thought of as a kind of syntax. Even though we give them names217

that suggest certain behaviors, like get and set, nothing about their structure enforces this218

behavior. Consider the ITree trigger set(x, 0) ; trigger get(x): while the names suggest219

that the result of this get should be 0, it actually produces a tree with one branch for220

every natural number. Likewise, the ITree JcKc representing an Imp program c does not fully221

express the behavior we would expect from c because it has uninterpreted state events.222

The behavior of events is determined by a function called an event handler from events
to effectful computations. As is standard, we represent effectful computations as elements
of a monad M , giving an event handler the type ∀A. E A→ M A. For example, consider
hprog which uses the standard monadic interpretation of state to interpret progE events:

hprog(get(x)) = λ(r, h). ret (r, h, h(x))
hprog(set(x, n)) = λ(r, h). ret (r, h[x 7→ n], ())

hprog(getreg(x)) = λ(r, h). ret (r, h, r(x))
hprog(setreg(x, n)) = λ(r, h). ret (r[x 7→ n], h, ())

hprog(print(ℓ, n)) = λ(r, h). trigger print(ℓ, n) ; ret (r, h, ())

Any event handler can be lifted to a function from ITrees to effectful computations223

using the interp function, which traverses an ITree, replacing each event with the effectful224

computation assigned by the handler. The full semantics of an Imp program is the interpreted225

ITree, interp hprog JcKc.226

2.5 Inlined Asm and Undefined Behavior227

Adding support for inlined Asm code introduces a new complication to the semantics of Imp:
undefined behavior. To analyze the correctness and security of a language toolchain, we need
to define the behavior of source-level programs. The semantics defined in Section 2.3 and
Section 2.4 do that for Imp as long as any inlined Asm has well-defined behavior. However,
consider the following Imp program, which contains inlined Asm.

p = c ; inline { Start : brz $0 A1 A2
A1 : load X ← 0

jmp Exit
A2 : load X ← 1

jmp Exit }

The inlined Asm program looks at the value in register 0 and, if it is zero, jumps to228

address A1; otherwise it jumps to address A2. Thus, the value of X after executing program229

p depends on the value of register $0 after c is executed. However, it is not clear what the230

register’s value will be when this program is compiled and run, since reasonable compilers231

could use the register $0 in different ways—or not at all—to compile the Imp command c,232

resulting in different register states. We thus consider inlining any Asm program that relies233

on the initial values of registers to be undefined behavior. We formalize this property in234

Section 5.3. We further take the same approach as CompCert,2 and only verify the correctness235

and security of programs that are well-defined.236

2 Personal Communication with Xavier Leroy.

XX:8 Semantics for Noninterference with Interaction Trees

R(r1, r2)

E ⊢ ret r1 ≈R ret r2

−−−−−−−−−−−−−−−−−−−−−
e : E A ∀(a : A), E ⊢ k1(a) ≈R k2(a)

E ⊢ Vis e k1 ≈R Vis e k2
=======================================

E ⊢ t1 ≈R t2

E ⊢ τ · t1 ≈R τ · t2
==================

E ⊢ t1 ≈R t2

E ⊢ τ · t1 ≈R t2

−−−−−−−−−−−−−−−
E ⊢ t1 ≈R t2

E ⊢ t1 ≈R τ · t2

−−−−−−−−−−−−−−−

Figure 3 Inference rules for weak bisimulation

2.6 Weak Bisimulation237

Much of the power of ITrees comes from their equational theory. While it is natural to238

reason about coinductive structures like ITrees using bisimulation, the “obvious” bisimulation239

relation is too strong for our needs. For example, the more complex operations we have240

introduced, like iter and interp, insert some (finite number of) silent internal τ steps,241

which would be convenient to ignore. For this reason, we often prefer to work with a coarser242

equivalence called weak bisimulation, or equivalence-up-to-tau (eutt), which ignores finite243

numbers of τs when comparing two ITrees.244

Weak bisimulation is defined by the inference rules in Figure 3, where the relation245

is parameterized by a relation R used to compare return values. Furthermore, the event246

signature of the two ITrees is made explicit by the E parameter. The first three inference247

rules correspond to the three constructors of an ITree and are exactly the definition of strong248

bisimulation. The last two rules allow us to ignore any finite number of τs. The fact that249

these rules are inductive rather than coinductive is crucial. If these rules were coinductive,250

we could use them to show that a diverging ITree with only τ constructors is equivalent to251

any other ITree. Using this technique of mixed induction and coinduction, coinductive rules252

may be used infinitely often, while inductive rules can only be used a finite number of times253

before either terminating with a base case or applying a coinductive rule.254

Xia et al. [58] formalize the ITrees data structure and its metatheory in a Coq library,3255

providing a rich equational theory up to this definition of weak bisimulation. This theory allows256

users to prove termination-sensitive properties about ITrees without explicitly performing257

coinductive proofs, greatly reducing the proof burden.258

3 Exceptions with Interaction Trees259

As mentioned in Section 1, we include exceptions in Imp since they are an important example
of an effect which can change the control flow. In this section, we show how to model
exceptions with ITrees by adding throw and catch constructs to Imp as follows:

Commands c ::= · · · | throw(ℓ) | try {c1} catch {c2}

Note that the throw command includes an information flow label, specifying who may see260

the exception.261

3 This Coq development, as well as our extension of it, defines coinductive relations using the paco
library [19, 60] for coinductive reasoning.

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:9

3.1 Exceptions as Halting Events262

We model exceptions in ITrees as halting events. Recall from Section 2.2 that events create263

one branch for every possible response from the system. If an event has an uninhabited264

response type, then that continuation can never be run since the answer type has no values.265

We call such events halting because they force the computation to stop. We formalize this266

with the following lemma:267

▶ Lemma 1. Suppose A is an uninhabited type and e is an event of type E A, then given268

any continuations k1 and k2 and any return relation R, E ⊢ Vis e k1 ≈R Vis e k2.269

The continuation of a halting event cannot be run and has no effect on the computational270

content of the ITree. This allows a programmer to assign such an ITree any desired return type271

without changing its computational content. This property makes halting events useful for272

modeling (uncaught) exceptions: an exception can have any type and causes computation to273

stop. To represent exceptions using this strategy, we use an event type excE with only a single274

constructor exc : Err → excE(∅) which takes the exception’s data payload and produces an275

event with an empty answer type. This allows us to define Jthrow(ℓ)Kc = trigger exc(ℓ).276

3.2 Catching Exceptions277

Real-world languages do not just throw exceptions, they also handle them. To implement278

exception handling in ITrees, we use a common monadic interpretation of exceptions: we allow279

programs to return either a standard return value or an exception. Specifically, we move from280

an ITree of type itree (excE Err⊕E) R to one of type itree (excE Err⊕E) (Err⊕R)281

using interp to lift the following hexc event handler to the entire ITree, as described in282

Section 2.4.283

hexc : ∀A, (excE Err ⊕ E) A→ itree (excE Err ⊕ E) (Err ⊕A)284

hexc(inl(exc(e))) := ret inl(e)285

hexc(inr(e)) := x← trigger inr(e); ret inr(x)286
287

Even though the resulting ITree cannot have exception events, we still assign it a type that
allows them so it can cleanly compose with ITrees that do contain exception events. This
choice allows monadic bind to apply exception handlers—which may themselves contain
exception events—to any left values (exceptions) while leaving right values (normal returns)
unmodified. The result is the following exception-handling combinator, where case k1 k2
chooses the continuation k1 or k2 if the return value is inl or inr, respectively.

trycatch(t, kc) := interp hexc t≫= case kc ret

This trycatch combinator has a straightforward metatheory. In particular, we show288

how it interacts with the constructors of ITrees, allowing proof engineers to reason about289

trycatch without using manual coinduction.290

▶ Theorem 2. The trycatch operator satisfies the following equivalences:

E ⊢ trycatch(ret r, kc) ≈= ret r

E ⊢ trycatch(τ · t, kc) ≈= trycatch(t, kc)
E ⊢ trycatch(Vis inr(a) k, kc) ≈= Vis inr(a) λx.trycatch(k(x), kc)

E ⊢ trycatch(Vis inl(exc(ε)) k, kc) ≈= kc(ε)

Finally, the trycatch operator provides a simple denotation of Imp’s try-catch blocks:

Jtry {c1} catch {c2}Kc = trycatch(Jc1Kc , λ_. Jc2Kc)

XX:10 Semantics for Noninterference with Interaction Trees

4 Indistinguishability of Interaction Trees291

To leverage the common semantic domain of ITrees to guarantee the security of a toolchain,292

we define our indistinguishability relation purely semantically. Intuitively, for programs to293

be indistinguishable, they must return indistinguishable results and have indistinguishable294

interactions with their environments.295

Since return values can be arbitrary types, we follow eutt by parameterizing indistin-296

guishability over a return relation R. For indistinguishability, R describes when two values297

appear to be the same to the adversary. For example, consider a program that outputs a pair298

(a, b) where a is visible to Alice and b is visible to Bob, but not vice versa. The values (1, 1)299

and (1, 2) are not equal, but they are indistinguishable from Alice’s perspective, as she can300

only see the first element. We can represent Alice’s view of the output with a relation RAlice301

defined by RAlice((a, b), (a′, b′)) ⇐⇒ a = a′.302

We could simply use eutt with a return relation R modeling indistinguishability. The303

resulting relation would model an adversary who can only see some part of the program’s304

output, but it would require the two programs to interact with the environment in precisely305

the same way. Most settings, however, allow adversaries to see some interactions, but not306

others. For example, memory may be partitioned into a protected heap the adversary can307

never see, and an unprotected heap that it can see at all times. Reasoning about security308

when some events are visible and others are not requires changing eutt to account for what309

the adversary can observe.310

4.1 Secure Equivalence Up-To Taus311

Our indistinguishability relation is called secure equivalence up-to tau or seutt. In addition312

to a return relation, seutt is also parameterized by a label ℓ, representing what the adversary313

can see, and a sensitivity function ρ that maps events to labels, representing who may observe314

which events. Intuitively, two ITrees are related by seutt if the environment interactions315

appear the same to an adversary who can see events only at or below label ℓ, and the return316

values are related by R. We write the relation as E; ρ ⊢ps t1 ≈ℓ
R t2.317

Notably, we base the relation on eutt, which makes it progress sensitive. Recall from318

Section 2.1 that progress-sensitive noninterference allows any adversary to determine if a319

program silently diverges, and is often prohibitively expensive to enforce. We will also define320

pi-seutt, a progress-insensitive version of seutt, in Section 4.3. The judgments take the321

same form, so we annotate the turnstile with a subscript ps or pi to distinguish them visually.322

For presentation, we separate the rules for seutt into three groups: rules covering returns,323

τs, and public events (Figure 4), rules covering secret events that do not halt the program324

(Figure 5), and rules covering secret halting events (Figure 6).325

Public Events and Returns. When an adversary is able to see an event, indistinguishability326

acts just like weak bisimulation. The rules, found in Figure 4, are almost identical to the rules327

of eutt, but with the added requirement that any visible event be visible to the adversary.328

That is, we require ρ(e) ⊑ ℓ in PubVis.329

It might seem mysterious that we require the event to be visible in PubVis. But allowing330

this rule to apply no matter the visibility would allow the adversary too much power, since331

they would know that the same result is returned on both sides of the equivalence. As we332

will see, the rule for invisible events is stricter. We will also see how this strictness, when333

proving a program p indistinguishable from itself, corresponds to proving that the behavior334

of p does not differ in runs in low-equivalent environments. If we were to allow high events in335

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:11

[Ret]
R(r1, r2)

E; ρ ⊢ps ret r1 ≈ℓ
R ret r2

−−−−−−−−−−−−−−−−−−−−−−−−− [TauTau]
E; ρ ⊢ps t1 ≈ℓ

R t2

E; ρ ⊢ps τ · t1 ≈ℓ
R τ · t2

======================

[PubVis]

∀a, E; ρ ⊢ps k1(a) ≈ℓ
R k2(a)

e : E A ρ(e) ⊑ ℓ

E; ρ ⊢ps Vis e k1 ≈ℓ
R Vis e k2

============================= [TauL]
E; ρ ⊢ps τ · t1 ≈ℓ

R t2

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−

[TauR]
E; ρ ⊢ps t1 ≈ℓ

R τ · t2

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−

Figure 4 Inference rules for indistinguishability, where all events are visible

[PrivVisTau]

∀a, E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R τ · t

================================ [PrivVisIndL]

∀a, E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[PrivVisVis]

∀(a :A)(b :B), E; ρ ⊢ps k1(a) ≈ℓ
R k2(b) e1 : E A e2 : E B

ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ ¬empty(A) ¬empty(B)

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

===

Figure 5 Inference rules for indistinguishability, where events are not visible but answer types
are inhabited

PubVis, this would allow our proof to only consider the behavior of p in one environment,336

breaking our correspondence with information-flow security.337

Private Events With Responses. When the adversary is unable to view an event, seutt338

cannot act like eutt. In this case, the rules are designed to formalize two intuitions. If the339

computation continues after a secret event, we should treat the event like a τ , since the340

adversary cannot observe either. If the event halts the computation, the event should be341

equivalent to a silently nonterminating computation.342

The rules in Figure 5, along with symmetric analogues of PrivVisTau and PrivVisIndL,343

handle the case where the event allows computation to continue—that is, the event’s answer344

type is inhabited. The first rule, PrivVisTau, relates a private event Vis e k with a τ · t. In345

addition to requiring the event to be secret (ρ(e) ̸⊑ ℓ) and have a non-empty answer type346

(¬empty(A)), it also requires the continuation k produce an ITree indistinguishable from t for347

every possible response. This requirement ensures that the adversary’s future observations348

cannot depend on the response to the private event. Note that the requirement that A be349

non-empty does more than just specify when the rule applies. Without it, a private halting350

event would trivially satisfy this condition, allowing it to relate to any ITree with a τ in351

front. Since the adversary can determine when a program has halted, they should be able to352

distinguish, for example, a program that throws a private exception from a program which,353

after a τ , prints to a public channel. This rule ensures that this intuition holds.354

PrivVisIndL is analogous to TauL, but for secret events instead of τ nodes. This rule355

has the same premises as PrivVisTau for the same reasons. Moreover, it only removes a node356

from the head of one ITree, not both. As with the definition of seutt, TauL, and TauR, we357

XX:12 Semantics for Noninterference with Interaction Trees

[EmpVisTau]

E; ρ ⊢ps Vis e k ≈ℓ
R t

e : E A empty(A)
ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R τ · t

======================= [EmpVisVisL]

∀b, E; ρ ⊢ps Vis e1 k1 ≈ℓ
R k2(b)

e1 : E A e2 : E B

empty(A) ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

====================================

Figure 6 Inference rules for indistinguishability, where events are halting and not visible

therefore make PrivVisIndL inductive, not coinductive, to avoid relating a infinite stream358

of secret events to all other ITrees.359

Finally, PrivVisVis removes a private event from the head of both sides of the relation.360

As with the previous rules, we require both events to be private and have non-empty answer361

types. This time, we require the continuations of the two events to be indistinguishable for362

every possible response of both events separately. This requirement formalizes the idea that363

the adversary should not be able to distinguish the program’s behavior on any pair of secret364

responses.365

To see the power of this rule, consider whether an adversary who can see l but not h

would find the following ITrees indistinguishable from themselves:

tsec ≜ x← trigger get(l);
y ← trigger get(h);
trigger set(h, x + y)

tinsec ≜ x← trigger get(l);
y ← trigger get(h);
trigger set(l, x + y)

One would hope that tsec would be indistinguishable from itself, while tinsec would not be,366

and indeed that is the case. To (attempt to) prove that either tree is equivalent to itself, we367

walk through each ITree. Since l is visible, so is get(l), so PubVis applies and requires only368

that each possible value of x produce an ITree that is indistinguishable from itself. Because369

h is secret, the adversary should not be able to observe or infer its value, so we must use370

PrivVisVis to remove get(h). PrivVisVis requires that, for all possible pairs of values371

y1, y2, the continuations be indistinguishable. Thus in tsec, trigger set(h, x + y1) must be372

indistinguishable from trigger set(h, x + y2). Since h is secret, so are the set events, so373

PrivVisVis can remove them even when they differ. After removing set, the remaining374

continuation always produces ret (), so Ret finishes the proof.375

However, in tinsec, PrivVisVis does not apply to the set events since l is visible. PubVis376

only relates ITrees starting with the same event, but set(l, x + y1) ̸= set(l, x + y2) when377

y1 ≠ y2. As a result, no rule applies after removing get(h), so the adversary can distinguish378

tinsec from itself. In other words, tinsec is, indeed, insecure.379

Private Halting Events. Finally, we turn to the case where an event the adversary cannot380

see halts the computation. In this case, the adversary should be unable to tell that the event381

took place, and therefore should not be able to distinguish a program with a secret halt from382

a program that never terminates. However, the adversary should still be able to distinguish383

it from any ITree that contains an event the adversary can see.384

This intuition means that a private halting event should not be treated like a τ , as a385

private non-halting event is, but rather should be indistinguishable from an infinite stream386

of τs. We formalize this approach with the rules presented in Figure 6 along with their387

symmetric analogues. EmpVisTau peels a single τ off the right ITree, leaving the private388

halting event on the left unmodified. EmpVisVisL does the same for a private event.389

There are two interesting properties about these rules. First, unlike the rules for private390

events and τs that leave one side of the equivalence unmodified, these rules are coinductive, not391

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:13

inductive. This choice allows us to relate a private halting event to an entire nonterminating392

program, as long as that program has no public events. Indeed, no rule allows us to remove a393

private halting event, as there would be nothing left to compare. Second, EmpVisVisL has394

no requirement that B, the answer type of the not-necessarily-halting event, be non-empty.395

This choice avoids the need to explicitly handle the case where both ITrees contain private396

halts. If B is non-empty, then EmpVisVisL treats the event as a τ . If B is empty, then the397

first premise of the rule is trivially satisfied, which is desirable, as in that case both ITrees398

begin with a private halt event and should be equivalent.399

4.2 The Metatheory of Indistinguishability400

The seutt relation captures intuitions about when two ITrees are indistinguishable to401

some adversary, but using it requires a delicate mix of induction and coinduction. To both402

demonstrate the power of our definition and better support verification, we also develop a403

library of metatheory for indistinguishability. This library supports reasoning about cross-404

language toolchains without the need for explicit coinduction, as we will see when we verify405

the correctness of a security type system and compiler for Imp (Sections 5 and 6, respectively).406

Indistinguishability as a PER Model. Recall from Section 2.1 that Sabelfeld and Sands407

[47] argue for indistinguishability forming a partial equivalence relation (PER). It would408

be nice if seutt always formed a PER, but because it is parameterized on an arbitrary409

relation for return values, that is not always the case. Instead, we prove generalized versions410

of transitivity and reflexivity. In particular, if we let
↔
R denote the reverse relation of R—that411

is,
↔
R(x, y) △⇐⇒ R(y, x)—then the following theorems hold.412

▶ Theorem 3. For all R, E, ρ, and ℓ, if E; ρ ⊢ps t1 ≈ℓ
R t2, then E; ρ ⊢ps t2 ≈ℓ

↔
R

t1.413

▶ Theorem 4. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E; ρ ⊢ps t2 ≈ℓ
R2

t3 then E; ρ ⊢ps t1 ≈ℓ
R1◦R2

t3.414

Note that if R is symmetric, then R =
↔
R, and if R is transitive, then R ◦R ⊆ R. These415

properties allow us to prove the following corollary.416

▶ Corollary 5. If R is a PER, then so is E; ρ ⊢ps − ≈ℓ
R − for any E, ρ, and ℓ.417

ITree Combinators. ITrees are often defined using the combinators from Section 2.2,418

making it important to understand how indistinguishability interacts with those combinators.419

The definition of seutt directly describes how to relate simple programs defined using only420

ret and trigger, but they say nothing about larger ITrees built using bind and iteration.421

Bind allows for the sequential composition of programs. We would like indistinguishable422

programs t1 and t2 followed by indistinguishable continuations k1 and k2 to compose into423

larger indistinguishable programs t1≫=k1 and t2≫=k2. The following theorem says that this424

result holds whenever the relation R1, securely relating t1 and t2, puts enough constraints on425

their possible outputs to ensure that k1 and k2 are always securely related at some relation426

R2.427

▶ Theorem 6. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and for all values a, b, R1(a, b) implies E; ρ ⊢ps428

k1(a) ≈ℓ
R2

k2(b), then E; ρ ⊢ps t1≫= k1 ≈ℓ
R2

t2≫= k2.429

Iteration represents loops, which have two parts: an initial value, and a body that produces430

a value from the previous value. Indistinguishable initial values paired with indistinguishable431

bodies produce indistinguishable loops, as we can see in the following theorem.432

XX:14 Semantics for Noninterference with Interaction Trees

▶ Theorem 7. If R1(a1, b1) and, for any a, b, E; ρ ⊢ps k1(a) ≈ℓ
caseR(R1,R2) k2(b) whenever433

R1(a, b), then E; ρ ⊢ps iter k1 a1 ≈ℓ
R2

iter k2 b1.434

This rule is conceptually similar to a loop invariant from a Hoare-style logic. R1 is a property435

that is initially true and is preserved on each iteration except the final one, while the final436

iteration guarantees that R2 holds. The caseR(R1,R2) function lifts two relations to a single437

relation over sum types such that R1 is applied to two left values, R2 is applied to two right438

values, and no other combination is related.439

Relationship with Equivalence Up-To Taus. Recall that weak bisimulation of ITrees440

(eutt) requires two ITrees to contain the same pattern of interaction with their environment.441

Our notion of indistinguishability assumes that adversaries distinguish programs purely based442

on their interactions with the environment. One would thus expect that combining eutt443

with indistinguishability should result in indistinguishability. The following theorem shows444

this to be the case.445

▶ Theorem 8 (Mixed Transitivity). If both E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we can446

conclude that E; ρ ⊢ps t1 ≈ℓ
R1◦R2

t3.447

This is a very powerful theorem. In particular, many program transformations preserve448

equality. That is, they take source programs with equivalent-up-to-taus ITree representa-449

tions to target programs with the same property. Mixed transitivity tells us that compil-450

ers built from such transformations also preserve indistinguishability. For instance, since451

noninterference—the security property we are ultimately considering—is defined as a program452

being indistinguishable from itself, mixed transitivity supports a very simple proof that the453

compiler in Section 6 preserves noninterference. While this result might be surprising, it454

reflects the utility of ITrees and indistinguishability. By looking at which labels can distinguish455

an ITree from itself, we can discover where leaks are possible.456

4.3 Progress-Insensitive Indistinguishability457

The type systems that enforce progress-sensitive noninterference are extremely restrictive.458

Thus, information-flow control literature mostly studies progress-insensitive type systems.459

These type systems enforce noninterference against adversaries who cannot see when a460

program has begun to silently loop forever. Intuitively, such adversaries believe that silently461

looping programs could break out of their loops at any moment, and so do not distinguish462

them from programs which have produced visible events.463

In order to support such reasoning, we introduce pi-seutt, a progress-insensitive version464

of indistinguishability for ITrees. This leads to the following definition:465

▶ Definition 9 (pi-seutt). The relation pi-seutt, the progress-insensitive version of in-466

distinguishability, is defined by modifying the definition of seutt by completely removing467

the rules for halting events (all rules in Figure 6) and making every other rule coinductive468

(this modifies TauL and TauR in Figure 4 as well as PrivVisIndL in Figure 5 and its469

not-presented symmetric counterpart).470

This relation is strictly more permissive than seutt, since it relates every ITree to silently471

diverging ITrees and private halts. These facts can be formalized in the following theorems:472

▶ Theorem 10. If E; ρ ⊢ps t1 ≈ℓ
R t2 then E; ρ ⊢pi t1 ≈ℓ

R t2.473

▶ Theorem 11. Given any ITree t, E; ρ ⊢pi tspin ≈ℓ
R t.474

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:15

▶ Theorem 12. Given any ITree t, if e is a halting event, then E; ρ ⊢pi Vis e k ≈ℓ
R t.475

Just as with the progress-sensitive version of indistinguishability, we can show that476

indistinguishability plays well with the usual ITree combinators. This allows us to prove477

ITrees indistinguishable in many cases without resorting to hand-rolled coinduction.478

▶ Theorem 13. If E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E; ρ ⊢pi k1(a) ≈ℓ
R2

k2(b) whenever R1(a, b), then479

E; ρ ⊢pi t1≫= k1 ≈ℓ
R2

t2≫= k2.480

▶ Theorem 14. If R1(a1, a2) and for any a, a′, E; ρ ⊢pi k1(a) ≈ℓ
caseR(R1,R2) k2(a′) whenever481

R1(a, a′), then E; ρ ⊢pi iter k1 a1 ≈ℓ
R2

iter k2 a2.482

Moreover, mixed transitivity again holds, allowing for simple proofs of compiler safety:483

▶ Theorem 15 (Mixed Transitivity). If both E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we484

get E; ρ ⊢pi t1 ≈ℓ
R1◦R2

t3.485

Progress-insensitive indistinguishability behaves differently from the progress-sensitive486

sibling version in one important way: it does not form a PER. Because it relates a diverging487

ITree to every other ITree, pi-seutt is not transitive. This is not surprising, since progress-488

insensitive indistinguishability is not a PER [16, 43, 55]. It does, however, retain generalized489

symmetry, and a weakened but still-useful version of generalized transitivity:490

▶ Theorem 16. If E; ρ ⊢pi t1 ≈ℓ
R t2 then E; ρ ⊢pi t2 ≈ℓ

↔
R

t1.491

▶ Theorem 17. If E; ρ ⊢pi t1 ≈ℓ
R1

t2, E; ρ ⊢pi t2 ≈ℓ
R2

t3, and t2 converges along all paths,492

then E; ρ ⊢pi t1 ≈ℓ
R1◦R2

t3.493

Where an ITree is considered convergent if it is either a ret, a τ followed by a convergent494

ITree, or a non-halting event followed by a continuation that converges for any input.495

Unlike progress-sensitive indistinguishability, we can easily show that loops produce no496

events that are observable to some adversary at ℓ via pi-seutt. Suppose that we want to497

show that iter body a0 emits no events that are observable to some adversary at ℓ. We498

can do so by showing that iter body a0 and ret b are indistinguishable with some return499

relation R. This shows that the body of the loop both emits no observable events and, if500

the loop terminates, it returns a value c where R(c, b). Importantly, we have not made any501

statement about whether the loop terminates; we have merely said that it will not produce502

events, regardless of its termination behavior. We formalize this in the following theorem:503

▶ Theorem 18. For any relation Rinv, if

Rinv(a0, b) and ∀a, Rinv(a, b) =⇒ E; ρ ⊢pi body a ≈ℓ
leftcase(Rinv,R) ret b,

then E; ρ ⊢pi iter body a0 ≈ℓ
R ret b, where the relation leftcase is defined as follows:

leftcase(R1,R2)(inl(a), b) = R1(a, b) leftcase(R1,R2)(inr(a), b) = R2(a, b)

4.4 Noninterference and Interpretation504

Recall from Section 2.1 that we can define noninterference using an indistinguishability505

relation on programs by saying that a program is noninterfering if it is related to itself—given506

indistinguishable inputs, it will produce indistinguishable computations. We could define507

noninterference on ITrees using seutt (or pi-seutt), as they provide such indistinguishability508

XX:16 Semantics for Noninterference with Interaction Trees

relations by design. This approach produces a sensible definition, but one that assumes an509

extremely strong adversary.510

Consider the following Imp program, where the his have label ℓh and the lis have label ℓl:

if (h1 = 0) then {h2 := l1} else {h2 := l2}

Since the program writes only to secret variables, intuitively this program seems secure.511

However, according to seutt, it is not related to itself at ℓl since reading from l1 and l2512

produce different get events with label ℓl. All adversaries have the power to observe reads of513

public state, not just writes.514

The visibility of public read events is not the only problem. Using just seutt also means
a computation cannot publicly depend on the result of reading a secret variable, even if a
public value were written to that variable. For instance, the following program would also be
considered insecure:

h := l ; print(ℓl, h)

If h cannot change between assignments, this program is intuitively secure, but seutt at ℓl515

requires print(ℓl, h) to produce the same output regardless of the value of h, which it clearly516

does not.517

On uninterpreted ITrees, seutt models a system where both reads and writes are visible518

to anyone who can see the variable, and the value of a secret variable may silently change519

between a read and a write. This model makes perfect sense in some contexts—like distributed520

computation [28]—but we usually consider weaker adversaries.521

We can remove these assumptions and model a weaker adversary by interpreting state,522

as we discussed in Section 2.4. Interpreting these programs would result in two meta-level523

functions (i.e., Coq functions) which take a state as input and produce an ITree returning524

an output state. For example in Section 2.4, we define the semantics of an Imp program c525

as an interpreted ITree—that is, as a function from states to ITrees—not as a single ITree526

with state events. We thus adjust our notions of indistinguishability and noninterference to527

account for this semantic construct.528

Intuitively, we start with a family of relations RS,ℓ that describes when states are529

indistinguishable to an adversary at level ℓ and use it to define the following observational530

equivalence. For technical reasons, we require RS,ℓ to be an equivalence relation at all labels.531

For Imp, we use a relation ∼=ℓ
Γ which only requires states to agree on a variable x if the label532

of x flows to ℓ.533

▶ Definition 19 (Stateful Indistinguishability). Two stateful computations p1 and p2 are
px-statefully indistinguishable under RS,ℓ and R at label ℓ if, for every pair of states σ1 and
σ2 such that RS,ℓ(σ1, σ2),

E; ρ ⊢px p1 σ1 ≈ℓ
RS,ℓ×R p2 σ2

where RS,ℓ ×R((σ′
1, a1), (σ′

2, a2)) △⇐⇒ RS,ℓ(σ′
1, σ′

2) and R(a1, a2)

As described above, stateful indistinguishability with ∼=ℓ
Γ defines security against an534

adversary who can observe public writes, but not secret writes or secret reads. This indistin-535

guishability relation leads to a much more common definition of noninterference, and it is536

the one we will use in our case studies in Sections 5 and 6.537

▶ Definition 20 (Noninterference). A stateful computation is px-noninterfering with state538

relations RS,ℓ and return relation R if, given any label ℓ, it is px-statefully indistinguishable539

from itself under state relation family RS,ℓ and return relation R.540

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:17

Γ(x) ⊑ ℓ

Γ ⊢ x : ℓ
−−−−−−−−

Γ ⊢ n : ℓ
−−−−−−−

Γ ⊢ e1 : ℓ1 Γ ⊢ e2 : ℓ2

Γ ⊢ e1 ⊙ e2 : ℓ1 ⊔ ℓ2

−−−−−−−−−−−−−−−−−−−−−−−−

Figure 7 Typing rules for expressions in security-typed Imp.

Shared Typing Rules

[Skip]
Γ; pc ⊢px skip ⋄ ⊥
−−−−−−−−−−−−−−−− [If]

Γ ⊢px e : ℓ

Γ; pc ⊔ ℓ ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓ ⊢px c2 ⋄ ℓ′
ex

Γ; pc ⊢px if (e) then {c1} else {c2} ⋄ ℓex ⊔ ℓ′
ex

−−

[Assign]

Γ ⊢px e : ℓ

pc ⊔ ℓ ⊑ Γ(x)

Γ; pc ⊢px x := e ⋄ ⊥
−−−−−−−−−−−−−−−−−− [Seq]

Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′
ex

Γ; pc ⊢px c1 ; c2 ⋄ ℓex ⊔ ℓ′
ex

−−−

[Try]
Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′

ex

Γ; pc ⊢px try {c1} catch {c2} ⋄ ℓ′
ex

−−− [Print]
Γ ⊢px e : ℓ pc ⊔ ℓ ⊑ ℓ′

Γ; pc ⊢px print(e, ℓ′) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−

Progress-Sensitive Typing Rules Progress-Insensitive Typing Rules

[While-PS]
Γ ⊢ps e : ⊥ Γ;⊥ ⊢ps c ⋄ ⊥

Γ;⊥ ⊢ps while (e) do {c} ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PS]
Γ;⊥ ⊢ps throw(⊥) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−

[While-PI]

Γ ⊢pi e : ℓ

Γ; pc ⊔ ℓ ⊔ ℓex ⊢pi c ⋄ ℓex

Γ; pc ⊢pi while (e) do {c} ⋄ ℓex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PI]
pc ⊑ ℓex

Γ; pc ⊢pi throw(ℓex) ⋄ ℓex

−−−−−−−−−−−−−−−−−−−−−−−

Figure 8 Typing rules for commands in security-typed Imp.

5 Security Sensitive Type Systems For Imp541

To see how to use this theory of indistinguishability and ITrees, we now provide an information-542

security guarantee for an example toolchain for Imp. We begin by verifying two information-543

flow type systems, and proceed with a simple compiler in Section 6. The two notions of544

noninterference—progress sensitive and progress insensitive—require slightly different type545

systems, so we use our ITrees-based semantics to formally verify that both enforce their546

respective notions of noninterference. As is common in such type systems, we assume L forms547

a join semilattice with a unique least element ⊥ representing “completely public.”548

5.1 Two Type Systems549

Both type systems have two typing judgments: one for expressions and one for commands.550

The typing judgments for expressions take the form Γ ⊢ e : ℓ, where Γ is a map from variables551

to information flow labels, and ℓ is a label. The judgment says that e is well-typed and552

depends only on information at or below label ℓ. The typing rules for expressions, which are553

the same for both type systems, are presented in Figure 7.554

The typing rules for commands are presented in Figure 8. As these rules differ between555

XX:18 Semantics for Noninterference with Interaction Trees

the progress-sensitive and progress-insensitive type systems, we annotate the turnstyles with556

ps for progress-sensitive rules, pi for progress-insensitive rules, and px for rules that are557

identical in both type systems.558

The typing judgments for commands take the form Γ; pc ⊢px c ⋄ ℓex , where pc and ℓex are559

information-flow labels. The pc label is a program-counter label that tracks the sensitivity of560

the control flow, while the second label ℓex is an upper bound on the label of any exceptions561

c might raise. Note that the rules listed in Figure 8 do not include any way to type check an562

inlined Asm program. We address this concern in Section 5.3.563

Program-counter labels are a standard technique to control implicit information flows—
that is, information leaked by the control flow [46]. For example, consider the following
program where h has label ℓh and l has label ℓl with ℓh ̸⊑ ℓl:

if (h = 0) then {l := 0} else {l := 1}

While l is only ever explicitly set to constant values, its final value clearly depends on the564

secret h. The pc label allows us to detect and eliminate these flows by tracking the sensitivity565

of the control flow. Specifically, the If rule requires the condition’s label to flow to the pc in566

each branch, and the Assign rule requires the pc to flow to the label of the variable being567

assigned. In the above example, the label of the condition h = 0 is ℓh, so If requires c1 and c2568

to type check with a pc where ℓh ⊑ pc. Since Γ(l) = ℓl, Assign requires pc ⊑ ℓl. Transitivity569

of ⊑ thus requires ℓh ⊑ ℓl, which it does not, so the program correctly fails to type check.570

Exceptions can affect the control flow of a program, and therefore can also cause implicit
flows of information. Consider the following program.

if (h = 0) then {throw(ℓh)} else {skip} ; l := 1

Much like the previous example, this program only assigns l to a constant, yet it still leaks571

the value of h. We use a standard technique [33, 41] that relies on exception labels in the572

typing judgment. As previously mentioned, the exception label of a program c is an upper573

bound on the labels of any exception c might raise. To eliminate exception-based leaks, the574

Seq rule increases the pc label of the second command by the exception label of the first.575

The Try rule makes similar use of the exception label, increasing the pc in the catch block,576

as that command only executes if an exception is thrown.577

The Skip rule is simple, as skip can never have an effect. Print produces a flow of578

information to an output channel labeled ℓ′, so it checks that ℓ′ may safely see both the579

expression being written and the fact that this command executed.580

The rules for while loops and throw statements are different for the progress-sensitive and581

progress-insensitive type systems, so we handle them separately.582

Progress-Sensitive While and Throw Rules. In a progress-sensitive setting, the583

adversary can observe nontermination. As a result, a program’s termination behavior can584

only safely depend on completely public information. While-PS enforces this requirement585

in a standard, but highly restrictive way [56]: the loop condition and the pc of the context586

must both be the fully public label ⊥. Moreover, any exceptions thrown in the body of the587

loop could also influence termination behavior, so those must be fully public as well.588

Recall from Section 4 that a low observer cannot distinguish between an uncaught secret589

exception and an infinite loop. Thus non-public exceptions create the same implicit flows as590

while loops, so Throw-PS restricts exceptions in much the same way as While-PS restricts591

loops: everything must be fully public.592

Progress-Insensitive While and Throw Rules. In a progress-insensitive setting, the593

adversary cannot see nontermination, so secrets can safely influence the termination behavior594

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:19

of a program. The While-PI rule therefore allows loops with any pc. Since both the loop595

condition and any exceptions the loop body throws influence whether the body is run,596

While-PI increases the pc in the loop body by both the loop guard label and the body’s597

exception label.598

For the same reason, Throw-PI is more permissive than its progress-sensitive counterpart.599

In particular, the label on the exception just needs to be at least as secret as the pc label.600

5.2 Proving Security601

Both type systems enforce their respective notions of noninterference (Definition 20). Unlike602

many existing proofs of noninterference, our proofs using ITrees proceed by simple induction603

over the syntax of Imp. This simplicity is made possible by the combination of two facts: our604

Imp semantics is given by simple induction using ITrees combinators, and those combinators605

interact with indistinguishability in predictable ways, as described by the metatheory of606

Section 4.607

Type systems are inherently compositional: we are able to conclude that a program is608

secure knowing nothing about subprograms other than that they also type check. However,609

our semantic definition of noninterference is not fully compositional. To see this, consider610

the Imp program p = l := h ; throw(ℓ). This program updates the state in an insecure way,611

assigning a high-security value to a low-security variable, and then throws a low-security612

exception. In fully interpreted programs, the updated state is part of the return value, but613

adversaries cannot observe that return value if an exception is thrown (see Section 3), making614

p semantically secure. However, if we catch the exception, the adversary once again can see615

the effect of the assignment l := h. Thus, p does not compose securely.616

In order for our type system to enforce security compositionally, it enforces two properties617

beyond noninterference. Each rules out programs which, like p above, are secure but do not618

compose securely. The first describes how state and exceptions interact in a secure setting,619

which will rule out the example program above. The second, called confinement, defines how620

effects are bound by the type system.621

Interaction of Exceptions and State. Our first goal is to semantically rule out programs622

like p above, allowing us to reason compositionally about exception handlers. In order to do623

so, we need to reason about what state updates are performed before an exception is thrown.624

However, since in our semantics of Imp we interpret state events while leaving exceptions as625

ITree events, the result state of an Imp program is forgotten when an exception is thrown.626

This correctly models our adversary, who cannot distinguish between private exceptions627

and silently diverging programs. But in order to achieve compositionality, we need to keep628

information about the final state before an exception is raised. We accomplish this with a629

condition on an alternative semantics for Imp programs. In this semantics, exceptions are630

interpreted into the standard sum type representation before state events are interpreted.631

This interpretation, interp hprog (interp hexc JcKc), is a stateful function that returns632

a final state along with either a result of type unit or the label of an exception. We can633

inspect this final state to ensure that the program always takes indistinguishable states to634

indistinguishable states.635

We formalize this property as follows, where the relation ∼=ℓ
Γ requires that states agree on636

a variable x only when Γ(x) ⊑ ℓ, as in Section 4.4.637

▶ Definition 21 (Exceptions-and-State Property). A command c satisfies the px–exceptions-638

and-state property if interp hprog (interp hexc JcKc) is statefully indistinguishable from639

itself under ∼=ℓ
Γ and ⊤ at every label ℓ.640

XX:20 Semantics for Noninterference with Interaction Trees

Note the use of ⊤ as the output relation means we ignore whether or not c threw641

an exception, while we still ensure that the final states are indistinguishable. Ignoring642

this information in this property is acceptable because it is captured by our standard643

noninterference condition.644

Confinement. Even with the exceptions-and-state property, implicit flows, like the motivat-645

ing our use of pc labels, can still break compositionality. Confinement fixes this.646

In the typing judgment for commands, the pc and ℓex labels are both designed to constrain647

effects. If a command type checks with pc and ℓex , it should have no effects visible below pc648

and no (uncaught) exceptions above ℓex . Semantically, a program has no visible effects below649

pc if, for any label ℓ where pc ̸⊑ ℓ, it is indistinguishable from skip. For any uncaught650

exception terminating a ITree, we simply check that the exception’s label flows to ℓex . We651

formalize this idea into the following property called confinement.652

▶ Definition 22 (Confinement). A command c is px-confined to pc with ℓex exceptions, if,653

for all labels ℓ such that pc ̸⊑ ℓ, the following conditions hold.654

1. c is indistinguishable from skip at ℓ: interp hprog JcKc and interp hprog JskipKc are655

px-statefully indistinguishable under ∼=ℓ
Γ and = at ℓ.656

2. c makes no modifications to the state visible at ℓ: interp hprog (interp hexc JcKc) and657

interp hprog (interp hexc JskipKc) are px-statefully indistinguishable under ⊤ and = at ℓ.658

3. For all initial state heap states h and register states r where c throws an exception, the
label of that exception flows to ℓex :

E ⊢ (interp hprog (interp hexc JcKc))(r, h) ≈= ret (r′, h′, inr(ℓ′
ex)) =⇒ ℓ′

ex ⊑ ℓex

Together, these definitions restrict programs to those that compose securely, as required659

by the type system. With this compositionality property, we can prove that our type system660

enforces the conjunction of all three properties.661

▶ Theorem 23. If Γ; pc ⊢px c ⋄ ℓex , then c is px-noninterfering (Definition 20), satisfies the662

px–exceptions-and-state property, and is px-confined to pc with ℓex exceptions.663

5.3 Semantic Typing and Inline Asm664

Both type systems above enforce security, but are highly conservative. Many secure programs665

fail to type check, notably including any secure program with inlined Asm. To support666

our goal of cross-language security reasoning and address this concern without the need to667

introduce a type system for Asm, we provide a semantic typing [22] rule.668

One would hope that the three conditions discussed above would be sufficient. However, the669

possibility of undefined Asm behavior (see Section 2.5) necessitates an additional condition.670

We thus introduce the notion of inline validity, which requires inlined Asm to depend only671

on the initial heap state, not the initial register state, thereby ruling out undefined behavior.672

▶ Definition 24 (Inline Validity). An Asm program a is inline-valid if, given any two register
states r1 and r2, and any heap states h, then a run with (r1, h) and (r2, h) produces the same
changes to the heap. That is, if p = interp hprog (interp hexc JaKasm), then

printE ⊢ p(r1, h) ≈⊤×= p(r2, h).

Note that any Asm program that only ever reads from a register after it has written to673

that register will satisfy this property. We also lift this definition to whole Imp programs by674

applying it separately to each inlined Asm block.675

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:21

Registers r ::= $0 | $1 | . . .

Operands o ::= r | n

Instructions i ::= add r1 ← r2, o | sub r1 ← r2, o | mul r1 ← r2, o

| eq r1 ← r2, o | leq r1 ← r2, o | not r ← o

| mov r1 ← r2 | load r ← x | store x← r | print(ℓ, r)
Branches b ::= jmp A | brz r A1 A2 | raise ℓ

Blocks B ::= A : i1 ; · · · ; in ; b

Programs p ::= Start : i1 ; · · · ; in ; b

B1 ; · · · ; Bm

Figure 9 Secure ASM syntax where x is a variable, A is an address, n is a natural number, and ℓ

is an information-flow label.

▶ Definition 25 (Validity). c is a valid Imp program if any inlined Asm program it contains676

is an inline-valid Asm program.677

Including validity with our other semantic conditions is sufficient to guarantee security,
so we can safely define the following semantic typing rule.

[Semantic]

c is px-noninterfering
c satisfies the px–exceptions-and-state property

c is px-confined to pc and ℓex
c is valid (Definition 25)

Γ; pc ⊢px c ⋄ ℓex

−−

Adding this new rule to both type systems allows them to reason about multi-language678

programs including inline Asm and larger systems, even when the syntactic type system679

cannot reason about every component. Importantly, Semantic is sound from a security680

perspective. That is, Theorem 23 continues to hold for both extended type systems.681

6 Preserving Noninterference Across Compilation682

For a compiled language like Imp, noninterference is only part of the story. After all, rather683

than run Imp code directly, programmers instead compile Imp to Asm and run the Asm.684

Compilation can change programs significantly, and can introduce insecurity in the process.685

Thus, we need to ensure that the compiler translates noninterfering Imp programs into686

noninterfering Asm programs. We now turn our attention to the proof-engineering effort687

involved in providing such an assurance. In particular, we show that (a) adding exceptions688

and information-flow labels to Imp does not complicate the proof of compiler correctness,689

and (b) turning a proof of correctness into a proof of noninterference preservation is simple690

using mixed transitivity (Theorem 8).691

Note that, to build our compiler, we had to fix the number of information-flow labels.692

We thus specialize our discussion of Imp from Section 5 to the two-point lattice L = {⊤,⊥}.693

Using any other finite lattice would require only minimal changes.694

6.1 Asm, Its Semantics, and the Compiler695

Figure 9 presents the syntax of Asm, the simple assembly language that our compiler targets.696

An Asm program is a sequence of blocks, where each block starts at some address A and697

XX:22 Semantics for Noninterference with Interaction Trees

consists of a sequence of straight-line instructions followed by a single jump. The first block698

must be at the special address Start.699

Most Asm instructions write to exactly one register, computing the written value from700

a combination of other registers and integer constants. For instance, add $0← $1, 1 takes701

the value of register $1, adds one, and stores the result in register $0. The mov instruction702

copies the value of one register into another, while load and store move information703

between registers and the heap. Finally, the print instruction prints information to a stream,704

depending on the label ℓ.705

Jumps are either direct jumps, conditional jumps, or exceptions. A direct jump jmp A706

immediately moves execution to the beginning of the block with address A. A conditional707

jump brz r A1 A2 move execution to A1 if register r contains zero and A2 otherwise. The708

raise ℓ branch raises an exception. Note that there is no equivalent of catching an exception.709

We assume that Asm programs always jump to either the address of one of the program’s710

blocks or a special Exit address.711

Rather than representing Asm syntax directly in our Coq code, we take a more composi-712

tional approach and represent sub–Control-Flow Graphs (sub-CFGs). These represent the713

structure of part of an Asm program. While a complete Asm program contains a unique714

Start address, sub-CFGs may contain multiple addresses accessible to the outside. We refer715

to addresses which are accessible to the outside as input addresses. Likewise, sub-CFGs may716

jump to undefined addresses, whereas complete ASM programs always jump either to a717

defined address or Exit. We refer to the undefined addresses a sub-CFG may jump to as718

its output addresses. Thus, a complete Asm program is a sub-CFG with exactly one input719

address (Start) and exactly one output address (Exit).720

Intuitively, sub-CFGs execute starting at some input address, potentially jumping inter-721

nally several times before they jump to some output address. To represent this pattern, we722

give sub-CFGs semantics as functions from an address to an ITree that return an address.723

That is, the semantics of a sub-CFG takes as input the input address at which to start724

executing, and produces an ITree that returns the output address the program jumps to.725

This structure is due to Xia et al. [58], and their semantic needed only minor changes to726

accommodate printing and exception-throwing.727

In Xia et al.’s original compiler, Imp code always mapped to complete Asm programs.728

However, to accommodate exception throwing, our compiler has an extra step of indirection.729

We map Imp programs to sub-CFGs with exactly one input address but three output addresses.730

The first represents Exit, as in a complete Asm program, while the second two represent731

the location of exception handler code. Thus, we compile throw(ℓ) to a jump to the second732

address if ℓ = ⊥ and the third address if ℓ = ⊤. To compile a try-catch command, we place733

one copy of the handler at the second address and a second copy at the third address. That734

means any exception will jump to the handler code, regardless of the label of the exception,735

matching the semantics we gave Imp in Section 3. Note that we still need separate addresses736

for each label to properly compile uncaught exceptions.737

For inlined Asm code, we would hope to include it in the compiled code directly with no738

changes. Unfortunately, if inlined Asm throws an exception with a raise instruction, the739

surrounding Imp code can catch it, but embedding the raise unmodified in the compiled740

output would render the exception uncatchable. To support catching these exceptions, we741

process inlined Asm to replace raise instructions with jumps to the appropriate address.742

This change causes the inlined exception to properly jump to the handler code.743

While the infrastructure described above translates Imp code into sub-CFGs, the end744

goal of our compiler is to translate complete Imp programs into complete Asm programs.745

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:23

The final step uses the two output addresses for exceptions by linking the sub-CFG of the746

complete Imp program with two different handlers. The low-security exception handler raises747

a low-security exception, while the high-security exception handler raises a high-security748

exception. Thus, any Imp code that raises an exception compiles to a complete Asm program749

that raises that same exception, while Imp code that catches an exception compiles to a750

complete Asm program with equivalent control flow.751

6.2 Compiler Correctness752

We adapt Xia et al.’s [2020] proof of compiler correctness to account for the modifications we753

have made to Imp and Asm. We formalize correctness by comparing the source and the target754

programs—after interpretation—using weak bisimilarity. Intuitively, two stateful programs755

are weakly bisimilar if, whenever they are given related start states, the resulting ITrees are756

weakly bisimilar. We use a return relation Renv. Renv ignores the register files and compares757

heaps using a relation ∼=, which ensures that they map equal variables to equal values. We758

can now state the correctness theorem for the compile function.759

▶ Theorem 26. For any initial heap states h1, h2 such that h1 ∼= h2, any register states
r1, r2, and a valid Imp command c, the following equation holds

excE⊕ printE ⊢ interp himp JcKc (r1, h1) ≈Renv interp hasm Jcompile(c)Kasm (r2, h2)

where Renv((_, h1, _), (_, h2, _)) ⇐⇒ h1 ∼= h2.760

Notably, the changes necessary to adapt Xia et al.’s [2020] proof of correctness to our761

modified compiler are small and isolated. Most cases of the inductive proof, corresponding to762

existing language features, needed only cosmetic changes. The new language features required763

new, but conceptually uninteresting, cases.764

6.3 Compiler Security765

We finally turn to our ultimate goal: proving that our compiler preserves security. There are766

two important notions of security for our compiler, both of which require cross-language767

reasoning. The first is that secure source programs are indistinguishable—by all adversaries—768

from target programs. This property directly relates an Imp program to an Asm program.769

The second is that the compiler preserves noninterference. While noninterference itself is770

a property of a single program, preserving noninterference is a property of a translation771

between two languages, which requires cross-language reasoning.772

In order to formalize the idea of a secure Imp program being indistinguishable from its773

compilation, we need to compare these programs, even though they come from different774

languages. Because we defined seutt purely semantically, we can use it as easily as if we775

were comparing programs in the same language. We use the return relation Rℓ
Γ, which again776

ignores the register file and ensures that they map equal visible variables to equal values.777

The theorem then takes the following form.778

▶ Theorem 27. For any valid Imp program c, if interp hprog JcKc is noninterfering with
state relation Rℓ

Γ and return relation =, and c is a valid Imp program, then the following
seutt equation holds for any label ℓ, arbitrary register states r1, r2 and heap states h1, h2
such that h1 ∼=ℓ

Γ h2.

excE⊕ printE ⊢px interp hprog JcKc (r1, h1) ≈ℓ
Rℓ

Γ
interp hprog Jcompile(c)Kasm (r2, h2)

XX:24 Semantics for Noninterference with Interaction Trees

Our second theorem is simply that our compiler takes noninterfering Imp programs to779

noninterfering Asm programs.780

▶ Theorem 28 (Noninterference Preservation). For a valid Imp program c, if interp hprog JcKc781

is noninterfering with state relations Rℓ
Γ and return relation =, then the same holds for its782

compilation. That is, interp hprog Jcompile(c)Kasm is noninterfering with Rℓ
Γ and =. This783

result holds for both progress-sensitive and progress-insensitive noninterference.784

Notably, the proofs of both theorems follows directly from Theorem 26 and mixed785

transitivity, showing the utility of mixed transitivity for cross-language security reasoning.786

7 Related Work787

Goguen and Meseguer [15] introduced noninterference to formalize confidentiality; that is,788

the intuitive notion that secret data does not leak to an adversary. Volpano et al. [57] enforce789

progress-insensitive noninterference with a type system, and Volpano and Smith [56] modify790

the type system to be progress-sensitive. These results led to a long line of work introducing791

noninterference to an increasing complicated settings [e.g., 1, 4, 31, 33, 34, 41, 42, 45, 46, 52,792

54, 62, 65]. Proving the security of these varied type systems led to complicated arguments793

for noninterference, but also gave rise to an informal library of proof techniques. This work794

fits into a tradition of proof techniques for noninterference via models.795

Most models view noninterference either as a trace (hyper)property or as the result of an796

indistinguishability relation. These perspectives are not mutually exclusive; we can view two797

programs as indistinguishable if they produce equivalent traces. Their focus, however, can be798

quite different. Trace-based models view noninterference as a 2-safety hyperproperty [12].799

That is, noninterference can be falsified using finite prefixes of two traces. Specifically,800

for any interfering program there are two inputs that differ only on secrets but produce801

distinguishable events after a finite number of steps.802

Indistinguishability models focus more on building compositional relations. Pioneered803

by Abadi et al. [1] and Sabelfeld and Sands [47], these models use PERs and define secure804

programs as those that are self-related. Two such approaches have yielded recent notable805

results. First, logical-relations techniques [44] inductively assign each type a binary relation. By806

constructing the relation to reflect the security requirements of the type, logical relations can807

reason about information flow control and noninterference [16, 43, 55]. Second, bisimulation808

approaches directly match up program executions to define indistinguishability [13, 49].809

This work straddles these methods. ITrees intuitively collect all possible traces of a810

program into one infinite data structure. Our binary indistinguishability relation on ITrees811

is thus combining the hyperproperty model of noninterference with the indistinguishability812

model. Moreover, our indistinguishability relation is built on top of weak bisimulation. To813

give meaning to a type system, we also build a small logical relation connecting types to our814

bisimulation arguments.815

To remain practical, many languages provide only progress-insensitive guarantees [e.g.,816

28, 29, 41, 57], despite the fact that termination channels alone can leak arbitrary amounts817

of data [6]. Techniques for enforcing progress-sensitive guarantees [46, 56] exist, but have818

seen little use. Recent work attempts to unify the two by explicitly considering termination819

leaks as declassifications [11]. Like other models of noninterference [16], seutt is naturally820

progress-sensitive, giving a strong guarantee. We include the progress-insensitive pi-seutt821

to give ITree-based semantics to more-practical systems as well.822

A few other works provide machanized proofs of noninterference using different tech-823

niques [3, 17, 53]. However, each verifies existing paper proofs [53] or mechanizes an existing824

L. Silver, P. He, E. Cecchetti, A. Hirsch, S. Zdancewic XX:25

proof technique designed for a single-language setting [3, 17](e.g., parametricity [3] or logical825

relations [17]). This work is unique among mechanizations of noninterference in its use826

denotational semantics designed to support multi-language settings.827

Originally defined by Xia et al. [58], ITrees are based on free monads and their deriva-828

tives [23, 24, 51]. This gives rise to a natural interpretation of effects via monad trans-829

formers [20, 27] that behave like algebraic-effect handlers [10, 35, 36, 38, 39, 48]. The830

information-flow community also studies effects deeply since they can leak information.831

Traditionally, information-flow languages use a program-counter label to reason about effects,832

as we saw in Section 5. Recent work by Hirsch and Cecchetti [18] connects program-counter833

labels with monads, giving the former semantics using the latter.834

Secure compilation is a very active research area. For instance, Barthe et al. [8] show835

how to securely compile to a low-level Asm-like target language. However, they use a836

type system for the target language to enforce security. Other efforts focus on particular837

language features, such as cryptographic constant time [9]. Moreover, until recently, most838

work on secure compilation focused on fully-abstract compilation [26]. Unfortunately, Abate839

et al. [2] recently showed that full abstraction is not sufficient to guarantee preservation of840

hyperproperties like noninterference. Our Mixed Transitivity theorems (Theorems 8 and 15)841

show that equivalence-preserving compilation does preserve noninterference.842

Beyond work on secure compilation, most work on noninterference does not address843

multiple interacting languages. In one notable exception, Focardi et al. [14] examine the844

relationship between a process-calculus–based notion of security and simple imperative845

language with information-flow control, similar to Imp. They translate their version of Imp846

into CCS and show that they preserve Imp’s security guarantees. However, their work contains847

only pencil-and-paper proofs, rather than formally verifying their translation or its security.848

Finally, this work focuses on an approach for verifying language toolchains, but running849

any program requires hardware. Most language-based security and verification work assumes850

the hardware is predictable and reliable, but cannot enforce security. Hardware enforcement851

of information-security properties [59, 64] provides dynamic enforcement of properties like852

noninterference at the cost of space and power usage. Combining these mechanisms with our853

approach could reduce the overhead of hardware enforcement for verified-secure programs854

and provide a means to guarantee that interactions with unverified programs remain safe.855

8 Conclusion856

This paper uses ITrees to reason semantically about noninterference. Our main technical857

contributions are two new indistinguishability relations on ITrees that we use to define858

noninterference—one progress sensitive and one progress insensitive—and their metatheory.859

While both noninterference definitions are coinductive, our metatheory library supports860

verifying properties of a language toolchain with no direct use of coinduction.861

The two indistinguishability relations describe security in many settings, and we plan to862

include them in the ITrees library. Importantly, because they do not place any restrictions863

on the events in an ITree, they can be used for reasoning about a variety of language864

features. However, we recognize that many variations of noninterference appear in the865

literature, depending on the adversarial model and desired language features. For instance,866

declassification allows private information to be made public in controlled circumstances,867

creating a need for more complicated security conditions. We hope that the relations studied868

here both become the basis of verification efforts larger than our case study and that they869

serve as a starting point for further exploration of indistinguishability relations for ITrees.870

XX:26 REFERENCES

References871

1 Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus of872

dependency. In ACM SIGPLAN Symposium on Principles of Programming Languages873

(POPL), 1999. doi: 10.1145/292540.292555.874

2 Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco Patrignani, and875

Jérémy Thibault. Journey beyond full abstraction: Exploring robust property preservation876

for secure compilation. In IEEE Computer Security Foundations Symposium (CSF), 2019.877

doi: 10.1109/CSF.2019.00025.878

3 Maximilian Algehed and Jean-Philippe Bernardy. Simple noninterference from para-879

metricity. Proc. ACM Program. Lang., 3(ICFP), jul 2019. doi: 10.1145/3341693. URL880

https://doi.org/10.1145/3341693.881

4 Maximilian Algehed and Alejandro Russo. Encoding dcc in haskell. In Workshop on882

Programming Languages and Analysis for Security (PLAS), 2017. doi: 10.1145/3139337.883

3139338.884

5 Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authorization. In IEEE885

Computer Security Foundations Symposium (CSF), July 2015. doi: 10.1109/CSF.2015.42.886

6 Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-887

insensitive noninterference leaks more than just a bit. In European Symposium on888

Research in Computer Security (ESORICS), pages 333–348. Springer, 2008. doi: 10.1007/889

978-3-540-88313-5_22.890

7 Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Cătălin891

Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack, and Andrew Tolmach. A892

verified information-flow architecture. SIGPLAN Not., 49(1):165–178, January 2014. ISSN893

0362-1340. doi: 10.1145/2578855.2535839. URL https://doi.org/10.1145/2578855.894

2535839.895

8 Gilles Barthe, Amitabh Basu, and Tamara Rezk. Security types preserving compilation.896

In Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking, and Abstract897

Interpretation, pages 2–15, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN898

978-3-540-24622-0.899

9 Gilles Barthe, Benjamin Greégoire, and Vincent Laporte. Secure compilation of side-900

channel countermeasures: The case of cryptographic “constant time”. In IEEE Computer901

Security Foundations Symposium (CSF), 2018. doi: 10.1109/CSF.2018.00031.902

10 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.903

Journal of Logical and Algebraic Methods in Programming, 84(1):108–123, January 2015.904

11 Johan Bay and Aslan Askarov. Reconciling progress-insensitive noninterference and905

declassification. In IEEE Computer Security Foundations Symposium (CSF), June 2020.906

doi: 10.1109/CSF49147.2020.00015.907

12 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer908

Security (JCS), 18(6):1157–1210, 2010. doi: 10.3233/JCS-2009-0393.909

13 Riccardo Focardi, Carla Piazza, and Sabina Rossi. Proof methods for bisimulation based910

information flow security. In Verification, Model Checking, and Abstract Interpretation911

(VMCAI), 2002.912

14 Riccardo Focardi, Sabrina Rossi, and Andrei Sabelfeld. Bridging language-based and913

process calculi security. In FoSSaCS, 2005. doi: 10.1007/978-3-540-31982-5_19.914

15 Joseph A. Goguen and Jose Meseguer. Security policies and security models. In IEEE915

Symposium on Security and Privacy (S&P), 1982. doi: 10.1109/SP.1982.10014.916

16 Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. Mecha-917

nized logical relations for termination-insensitive noninterference. Proc. ACM Program.918

https://doi.org/10.1145/3341693
https://doi.org/10.1145/2578855.2535839
https://doi.org/10.1145/2578855.2535839
https://doi.org/10.1145/2578855.2535839

REFERENCES XX:27

Lang., 5(POPL), January 2021. doi: 10.1145/3434291. URL https://doi.org/10.1145/919

3434291.920

17 Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. Mechanized921

logical relations for termination-insensitive noninterference. Proc. ACM Program. Lang.,922

5(POPL), jan 2021. doi: 10.1145/3434291. URL https://doi.org/10.1145/3434291.923

18 Andrew K. Hirsch and Ethan Cecchetti. Giving semantics to program-counter labels via924

secure effects. Proceedings of the ACM on Programming Languages, 5(POPL), January925

2021. doi: 10.1145/3434316.926

19 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameter-927

ization in coinductive proof. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT928

Symposium on Principles of Programming Languages, 2013. doi: 10.1145/2429069.2429093.929

20 Mauro Jaskelioff. Modular monad transformers. In Giuseppe Castagna, editor, Program-930

ming Languages and Systems, pages 64–79, Berlin, Heidelberg, 2009. Springer Berlin931

Heidelberg. ISBN 978-3-642-00590-9.932

21 Limin Jia and Steve Zdancewic. Encoding information flow in Aura. In Proceedings of933

the 2009 Workshop on Programming Languages and Analysis for Security (PLAS), pages934

17–29, 2009.935

22 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,936

and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent937

reasoning. In ACM SIGPLAN Symposium on Principles of Programming Languages938

(POPL), January 2015. doi: 10.1145/2676726.2676980.939

23 Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Proceedings of940

the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada,941

September 3-4, 2015, pages 94–105, 2015. doi: 10.1145/2804302.2804319. URL http:942

//doi.acm.org/10.1145/2804302.2804319.943

24 Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to944

monad transformers. In ACM SIGPLAN Notices, volume 48, pages 59–70. ACM, 2013.945

25 Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William946

Mansky, Benjamin C. Pierce, and Steve Zdancewic. From c to interaction trees: Specifying,947

verifying, and testing a networked server. In Proceedings of the 8th ACM SIGPLAN948

International Conference on Certified Programs and Proofs, 2019. doi: 10.1145/3293880.949

3294106.950

26 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115,951

2009. doi: 10.1145/1538788.1538814. URL http://doi.acm.org/10.1145/1538788.952

1538814.953

27 Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular inter-954

preters. In ACM SIGPLAN Symposium on Principles of Programming Languages (POPL),955

January 1995. doi: 10.1145/199448.199528.956

28 Jed Liu, Owen Arden, Michael D. George, and Andrew C. Myers. Fabric: Building957

open distributed systems securely by construction. 25(4–5):319–321, May 2017. doi:958

10.3233/JCS-0559.959

29 Tom Magrino, Jed Liu, Owen Arden, Chin Isradisaikul, and Andrew C. Myers. Jif 3.5:960

Java information flow. Software release, 2016. URL https://www.cs.cornell.edu/jif.961

30 Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2018.962

URL http://coq.inria.fr. Version 8.8.1.963

31 Mae P. Milano and Andrew C. Myers. MixT: A language for mixing consistency in964

geodistributed transactions. In ACM SIGPLAN Conference on Programming Language965

Design and Implementation (PLDI), 2018. doi: 10.1145/3192366.3192375.966

https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434291
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814
https://www.cs.cornell.edu/jif
http://coq.inria.fr

XX:28 REFERENCES

32 Eugenio Moggi. Computational lambda-calculus and monads. In LICS, pages 14–23,967

June 1989. Full version, titled Notions of Computation and Monads, in Information and968

Computation, 93(1), pp. 55–92, 1991.969

33 Andrew C. Myers. JFlow: Practical mostly-static information flow control. In ACM970

SIGPLAN Symposium on Principles of Programming Languages (POPL), January 1999.971

doi: 10.1145/292540.292561.972

34 Andrew C. Myers and Barbara Liskov. Complete, safe information flow with decentralized973

labels. In IEEE Symposium on Security and Privacy (S&P), 1998. doi: 10.1109/SECPRI.974

1998.674834.975

35 Gordon Plotkin and John Power. Adequacy for algebraic effects. In Furio Honsell and976

Marino Miculan, editors, Foundations of Software Science and Computation Structures,977

pages 1–24, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45315-4.978

36 Gordon Plotkin and John Power. Notions of computation determine monads. In Mogens979

Nielsen and Uffe Engberg, editors, Foundations of Software Science and Computation980

Structures, pages 342–356, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN981

978-3-540-45931-6.982

37 Gordon D Plotkin. A structural approach to operational semantics. Aarhus university,983

1981.984

38 Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied985

Categorical Structures, 11(1):69–94, 2003.986

39 Gordon D Plotkin and Matija Pretnar. Handling Algebraic Effects. Logical Methods987

in Computer Science, 9(4), December 2013. doi: 10.2168/LMCS-9(4:23)2013. URL988

https://lmcs.episciences.org/705.989

40 Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando990

Solar-Lezama. Liquid information flow control. Proceedings of the ACM on Programming991

Languages, 4(ICFP), August 2020. doi: 10.1145/3408987.992

41 François Pottier and Vincent Simonet. Information flow inference for ML. ACM Transac-993

tions on Programming Languages and Systems (TOPLAS), 25(1):117–158, January 2003.994

doi: 10.1145/596980.596983.995

42 Willard Rafnsson and Andrei Sabelfeld. Compositional information-flow security for996

interactive systems. In IEEE Computer Security Foundations Symposium (CSF), 2014.997

doi: 10.1109/CSF.2013.8.998

43 Vineet Rajani and Deepak Garg. Types for information flow control: Labeling granularity999

and semantic models. In IEEE Computer Security Foundations Symposium (CSF), 2018.1000

doi: 10.1109/CSF.2018.00024.1001

44 John Reynolds. Types, abstraction and parametric polymorphism. Information Processing,1002

1983.1003

45 Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight information-1004

flow security in haskell. In ACM SIGPLAN Haskell Symposium, 2008. doi: 10.1145/1005

1411286.1411289.1006

46 Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.1007

IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003. doi:1008

10.1109/JSAC.2002.806121.1009

47 Andrei Sabelfeld and David Sands. A PER model of secure information flow in sequential1010

programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001. doi: 10.1023/A:1011

1011553200337.1012

https://lmcs.episciences.org/705

REFERENCES XX:29

48 Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. Monad transformers1013

and algebraic effects: What binds them together. Technical Report CW699, Department1014

of Computer Science, KU Leuven, 2016.1015

49 Geoffery Smith. Probabilistic noninterference through weak probabilistic bisimulation.1016

In Computer Security Foundations Workshop (CSFW), 2003. doi: 10.1109/CSFW.2003.1017

1212701.1018

50 Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Disjunction1019

category labels. In Nordic Conference on Security IT Systems (NordSec), October 2011.1020

doi: 10.1007/978-3-642-29615-4_16.1021

51 Wouter Swierstra. Data types à la carte. Journal of Functional Programming, 18(4):1022

423–436, 2008. doi: 10.1017/S0956796808006758.1023

52 Tsa-ching Tsai, Alejandro Russo, and John Hughes. A library for secure multi-threaded1024

information flow in haskell. In IEEE Computer Security Foundations Symposium (CSF),1025

2007. doi: 10.1109/CSF.2007.6.1026

53 Marco Vassena and Alejandro Russo. On formalizing information-flow control libraries.1027

In Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for1028

Security, PLAS ’16, page 15–28, New York, NY, USA, 2016. Association for Computing1029

Machinery. ISBN 9781450345743. doi: 10.1145/2993600.2993608. URL https://doi.1030

org/10.1145/2993600.2993608.1031

54 Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. MAC: A verified1032

static information-flow control library. Journal of Logical and Algebraic Methods in1033

Programming (JLAMP), 95, 2018. doi: 10.1016/j.jlamp.2017.12.003.1034

55 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan. From1035

fine- to coarse-grained dynamic information flow control and back. In ACM SIGPLAN1036

Symposium on Principles of Programming Languages (POPL), 2019. doi: 10.1145/3290389.1037

56 Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum typings.1038

In IEEE Computer Security Foundations Workshop (CSFW), June 1997. doi: 10.1109/1039

CSFW.1997.596807.1040

57 Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow1041

analysis. Journal of Computer Security (JCS), 4(3), 1996. doi: 10.3233/JCS-1996-42-304.1042

58 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C.1043

Pierce, and Steve Zdancewic. Interaction trees: Representing recursive and impure1044

programs in coq. Proceedings of the ACM on Programming Languages, 4(POPL), January1045

2020. doi: 10.1145/3371119.1046

59 Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. Using information flow to1047

design an ISA that controls timing channels. In IEEE Computer Security Foundations1048

Symposium (CSF), June 2019. doi: 10.1109/CSF.2019.00026.1049

60 Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational theory1050

for weak bisimulation via generalized parameterized coinduction. In Proceedings of the1051

9th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP),1052

January 2020.1053

61 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilya Zaichuk, Vadim Zaliva, and Steve1054

Zdancewic. Modular, compositional, and executable formal semantics for llvm ir. Pro-1055

ceedings of the ACM on Programming Languages, 5(ICFP), 2021.1056

62 Steve Zdancewic and Andrew C Myers. Secure information flow via linear continuations.1057

Higher-Order and Symbolic Computation, 15(2-3), 2002. doi: 10.1023/A:1020843229247.1058

https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1145/2993600.2993608
https://doi.org/10.1145/2993600.2993608

XX:30 REFERENCES

63 Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making in-1059

formation flow explicit in HiStar. Communications of the ACM, 54(11):93–101, November1060

2011. doi: 10.1145/2018396.2018419.1061

64 Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based control and1062

mitigation of timing channels. In ACM SIGPLAN Conference on Programming Language1063

Design and Implementation (PLDI), June 2012. doi: 10.1145/2254064.2254078.1064

65 Lantian Zheng and Andrew C. Myers. End-to-end availability policies and noninterference.1065

In IEEE Computer Security Foundations Workshop (CSFW), 2005. doi: 10.1109/CSFW.1066

2005.16.1067

	1 Introduction
	2 Background
	2.1 Information-Flow Control
	2.2 Basic Definitions for Interaction Trees
	2.3 Semantics for Imp with Security Labels
	2.4 Handlers and Interpretations
	2.5 Inlined Asm and Undefined Behavior
	2.6 Weak Bisimulation

	3 Exceptions with Interaction Trees
	3.1 Exceptions as Halting Events
	3.2 Catching Exceptions

	4 Indistinguishability of Interaction Trees
	4.1 Secure Equivalence Up-To Taus
	4.2 The Metatheory of Indistinguishability
	4.3 Progress-Insensitive Indistinguishability
	4.4 Noninterference and Interpretation

	5 Security Sensitive Type Systems For Imp
	5.1 Two Type Systems
	5.2 Proving Security
	5.3 Semantic Typing and Inline Asm

	6 Preserving Noninterference Across Compilation
	6.1 Asm, Its Semantics, and the Compiler
	6.2 Compiler Correctness
	6.3 Compiler Security

	7 Related Work
	8 Conclusion

