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ABSTRACT

INTERACTION TREES AND FORMAL SPECIFICATIONS

Lucas Silver

Stephan Zdancewic

Interaction Trees are a recently developed form of denotational semantics for effectful programs

that is executable and compositional. This dissertation uses Interaction Trees to develop reusable,

language-independent tools for different classes of specifications. First, it demonstrates how to

apply the Dijkstra monads (Swamy et al., 2013; Maillard et al., 2019) approach to Interaction Trees.

Second, it demonstrates how to analyze the information flow properties of Interaction Trees, enabling

security analysis for any programs with Interaction Tree denotations. Finally, it presents the

Interaction Tree Specification framework, a program logic for Interaction Trees that enables efficient,

syntactic automated proofs of properties of Interaction Trees.
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CHAPTER 1

Introduction

1.1. Motivation

Formal verification of software is on the rise, combining a steady stream of theoretical advances

from academic research with a growing interest in verification from industry. Notable academic

examples include: the CompCert compiler (Leroy, 2009; Kästner et al., 2018), a formally verified,

optimizing compiler from C to machine code; the VST project (Appel, 2011, 2014), a separation

logic for reasoning about C programs; and the Iris logic (Jung et al., 2015), a language independent

separation logic for higher-order, effectful programming. Notable examples from industry include:

the sel4 verified microkernel (Klein et al., 2009); Amazon’s verification of the s2n cryptography

library (Chudnov et al., 2018); and the Heapster project (He et al., 2021) for reasoning about

low-level heap manipulating programs.

Formal verification can provide intrinsically stronger guarantees of the correctness and safety of

software than traditionally dominant methods like testing and code reviews (Appel et al., 2017).

Even the most sophisticated testing tools can test only a finite amount of a program’s possible

inputs, while formal verification can give guarantees about all possible inputs. The utility of formal

methods was also empirically demonstrated by the CSmith project. CSmith used randomized testing

techniques to identify bugs in a collection of C compilers and failed to find any bugs in the verified

components of CompCert (Yang et al., 2011). For all of these reasons, formal verification is a

promising avenue of research.

One limitation of formal verification, however, is the lack of multilanguage verification tools. For

example, VST (Appel, 2011) and CFML (Charguéraud, 2011) are both semi-automated separation

logics, but are incompatible because VST is for C and CFML is for Caml. A major exception to

this is Iris (Jung et al., 2015), a language independent separation logic for higher-order, effectful

programming. The Iris tool chain supports defining new programming languages while automatically

instantiating powerful logics for formal verification. However, Iris is a very heavy-duty tool, and much
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of its weight comes from its ability to reason about higher-order program features, like recursive,

higher-order functions. This leaves a gap in the literature for simpler tools that deal with simpler,

lower-order programming languages. This dissertation explores one path in the direction of addressing

this gap.

1.2. Formal Specifications and Formal Semantics

Formal verification relies heavily on two key, related technologies, formal semantics and formal speci-

fications. Formal semantics assign a mathematically precise meaning to programs. By formulating

the meaning of programs in terms of mathematics, we can apply the tools of mathematical proofs

to obtain high assurance guarantees about the behavior of programs. This can include guarantees

about an individual program, e.g., ensuring it computes the correct result; guarantees across an

entire programming language, e.g., ensuring well-typed programs have no undefined behavior; and

guarantees across different programming languages, e.g., ensuring that compiled programs refine the

behavior of their source programs.

Formal specifications provide a language to describe the behavior of a program or collection of

programs. A classic example of a language of formal specifications is Hoare logic (Hoare, 1969). Hoare

logic operates over Hoare triples. Hoare triples are tuples which contiain a program, a precondition,

and a postcondition. A Hoare triple is valid if, given any initial state that satisfies the precondition,

the program produces an output state that satisfies the postcondition. A closely related example is

separation logic (Reynolds, 2002; O’Hearn, 2007; Brookes, 2007). A separation logic enriches the

language of Hoare logic with the capability with the separating conjunction operator. The separating

conjunction operator enables reasoning separately about disjoint sections of the heap. Separation

logics have proven immensely useful for reasoning about memory safety and concurrency, among

many other applications (Jung et al., 2015; Cao et al., 2018; O’Hearn, 2007).

Besides program correctness, another example specification is noninterference, a condition from the

security literature. Suppose a program manipulates data with different levels of privilege, i.e., public

and private. Also suppose that observers have no way of directly reading or manipulating data that

they do not have access to. This assumption is a key component of the threat model for this security
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property. A noninterfering program respects these privilege levels, preventing observers from gaining

information about data they lack the permission to access. Such programs prevent public observers

from learning private information by manipulating and observing public information.

Each of the kinds of specification mentioned above constrains the behavior of a program, but

leaves significant leeway for programmers to make different implementation choices. This allows

the specifications to cover a wide range of solutions without compromising on correctness. Formal

specifications typically come equipped with reasoning principles to help users verify the correctness

of programs. In the case of program logics, these include inference rules involving the different

syntactic constructs of the language. In the case of noninterference, this can include a type system

that ensures that programs do not leak any private information. These reasoning principles are

justified with respect to the formal semantics of the language.

1.3. Interaction Trees

Interaction Trees, or ITrees (Xia et al., 2020), are a new form of formal semantics for representing

interactive, effectful, and potentially nonterminating computations. Most mechanized proof of

properties of interactive, effectful, and potentially nonterminating computations rely either on

operational semantics or on trace models (Focardi et al., 2002; Malecha et al., 2011; Gu et al., 2016).

Such representations have been instrumental in mechanized proofs of programs in diverse settings.

However, they each have significant drawbacks as well. Small-step operational semantics are

noncompositional, and require auxiliary information (like program counters, evaluation contexts,

and stateful stores) in addition to the syntax in order to specify their behavior. Both operational

semantics and trace models rely on noncomputable predicates, rendering them unable to be run

either for testing purposes or as a reference implementation.

ITrees, in contrast, are an executable, compositional, and denotational semantics for programming

languages. This unique combination of features provides many advantages for program verification.

Executability enables the formal semantics of a programming language to be tested, just like a

compiler or an interpreter. This opens up the possibility of using all of the available tools for testing

programs to check properties, reducing the possibility that a large amount of effort is spent trying
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to prove a property that is actually false. Compositionality gives us the ability to separate reasoning

about different language effects. Traditional semantics tend to model all effects in an interconnected

way, making it impossible to reason about the exception behavior of a language separately from its

stateful behavior. Denotational semantics map programs to mathematical objects in the underlying

metatheory. This allows us to use more of the tools of our metalogic. For example, loops are defined

in terms of a Coq function, which is reusable across different program semantics, rather than in

terms of inference rules in an inductive step relation specific to a particular language semantics

This in turn allows proof engineers to reuse a single reasoning principle about this underlying loop

function. They also admit simpler equational theories than operational semantics.

A growing number of projects seek to profit from these advantages by using ITrees. This includes

Vellvm (Zakowski et al., 2021a), an ITrees based semantics for the LLVM programming language.

The Vellvm project makes extensive use of the compositionality of effects in ITrees, separately defining

several categories of effects required in LLVM. This ITrees based semantics automatically yields a

reliable reference interpreter, an invaluable tool for testing production implementations. Vellvm has

also been used to justify compiler optimizations, heightening trust in LLVM compiler passes. It also

includes the Heapster project (He et al., 2021). Heapster provides a memory safe type system to

LLVM code, along with a program that transforms well typed LLVM code into equivalent programs,

known as functional specifications, written directly with the ITrees datastructure1. ITrees have also

been used in the DeepSpec web server to formalize a server’s specification (Koh et al., 2019), in

the Conditional Contextual Refinement framework for reasoning about code with independently

defined modules (Song et al., 2023), and in the DimSum framework for reasoning programs involving

multiple languages (Sammler et al., 2023).

These successes provide good reasons to consider an ITrees semantics when developing the formal

semantics of a programming language. Another reason to consider an ITrees semantics is the

advantage of standardization. A problem that arises in the formalization of one language can lead

to tools that directly apply to the formalization of another. If we create tools for reasoning about
1Heapster is discussed at length in Chapter 5.
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formal specifications over ITrees, the tools can be imported to different languages as libraries of

verified code. However, because ITrees are a new technology, relatively few such tools exists yet. In

this dissertation, I develop reusable, language-independent tools for different classes of

specifications over programs with ITree semantics.

1.4. Contributions

In particular, I introduce three additions to the ITrees literature that each investigate how we might

define certain kinds of specifications with respect to ITrees semantics.

• In Chapter 3, I show how to apply an array of algebraic-effect-aware specification types to

ITrees semantics using an extension of Dijkstra Monads (Maillard et al., 2019). The work in

this chapter is formalized in the artifact provided in Silver and Zdancewic (2020).

• In Chapter 4, I develop an information flow aware bisimulation relation for ITrees, enabling

the specification of information flow properties like noninterference on ITrees. The work in

this chapter is formalized in the artifact provided in Silver et al. (2023a).

• In Chapter 5, I augment ITrees with universal and existential quantification operators, show

how to use it as a language of specifications for ITrees, and demonstrate its effectiveness in

verifying real C programs when used in concert with the Heapster tool (He et al., 2021). The

work in this chapter is formalized in the artifact provided in Silver et al. (2023d).

The definitions and theorems in this dissertation have all been formalized in the Coq proof assistant.

1.5. Attribution

Most of the work presented in this dissertation was adapted from my previously published papers. I

performed the majority of the technical work, particularly with respect to the Coq developments,

and wrote the papers in collaboration with several coauthors. Chapter 3 is an adaptation of Dijkstra

Monads Forever: Termination-sensitive specifications for interaction trees (Silver and Zdancewic,

2021), which I wrote with my advisor Steve Zdancewic. Chapter 4 is an adaptation of Semantics for

Noninterference with Interaction Trees (Silver et al., 2023b), which I wrote with Paul He, Ethan
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Cecchetti, Andrew Hirsch, and Steve Zdancewic. Chapter 5 is an adaptation of Interaction Tree

Specifications: A Framework for Specifying Recursive, Effectful Computations that Supports Auto-

active Verification (Silver et al., 2023c), which I wrote with Eddy Westbrook, Matthew Yaccavone

and Ryan Scott. Both Semantics for Noninterference with Interaction Trees and Interaction Tree

Specifications: A Framework for Specifying Recursive, Effectful Computations that Supports Auto-

active Verification have been accepted for publication at ECOOP 2023. The work in each chapter

is heavily reliant on Interaction Trees (Xia et al., 2020). In particular, Chapter 2 is primarily a

repackaging of information from Xia et al. (2020), with the exception of Section 2.7 which repackages

information originally produced for Dijkstra Monads Forever (Silver and Zdancewic, 2021) and

Interaction Tree Specifications.
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CHAPTER 2

Interaction Trees

2.1. Definition

Interaction Trees (ITrees) are a data structure for denotational semantics implemented as a coinductive

variant of the free monad in Coq. The use of coinduction enables ITrees to represent possibly divergent

computation. The monadic structure of ITrees provides a natural notion of sequential composition.

And free monads provide an interface for flexibly representing various effects, as we will see below.

Intuitively, ITrees represent effectful programs as potentially infinite trees. Concretely, the ITree type

is parameterized by a return type R and a type family E with sort Type → Type. The definition is

presented in Figure 2.12. The Ret constructor forms the leaves of these trees, which carry inhabitants

of the R type. These leaves represent pure computations with no effects. Given any pure value r : R,

Ret r represents the program that does nothing except return the value r.

The Tau constructor represents one step of silent internal computation inside an ITree. Tau nodes are

key for representing programs that diverge without performing any other effect. An example of such

a program is while (true) do {skip}. Because ITrees are defined as a coinductive type, an infinite

number of Tau nodes can be chained together to form an ITree consisting only of silent internal steps

of computation. This is implemented in the following code.

CoFixpoint spin {E R} : itree E R := Tau spin.

The Vis constructor forms the branching nodes of ITrees. Each Vis node is labelled with an event of

type E A. Given an event e : E A, A is called the answer type of e. Events are inert values that are

primarily used to represent algebraic effects (Plotkin and Pretnar, 2013; Bauer and Pretnar, 2015;

Plotkin and Power, 2001). The answer type of an event is the type of the answer the corresponding

effect would evaluate to if interpreted by an environment. For example, consider the type family
2In the actual formalization, we use a negative coinductive types presentation of this data structure.
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CoInductive itree (E : Type → Type) (R : Type): Type :=
| Ret (r : R) (* computation terminating with value r *)
| Tau (t : itree E R) (* "silent" tau transition with child t *)
| Vis {A : Type} (e : E A) (k : A → itree E R). (* visible event e yielding answer in A *)

Figure 2.1: Interaction Trees definition

implemented by the following code.

Inductive stateE : Type → Type :=
| Get : stateE nat
| Put : nat → stateE unit.

The Get event in stateE represents an access of the state cell. When the environment interprets this

event, it will provide an answer in the form of a natural number. A Put n event in stateE represents

a mutation to the state cell, replacing its current contents with n. When the environment interprets

this event, it will provide an answer without any computational information, represented by a unit

value tt. This unit value represents a signal from the environment indicating that the Put event has

finished; it gives no further information about how it may have affected the environment . While

events are often used to represent algebraic effects such as state, Section 2.6 demonstrates how to

use them to define recursive computations in ITrees, and Chapter 5 demonstrates how to use them

to define logical quantifiers.

The continuation, of type A → itree E R, contained in the Vis node determines how the rest of the

program executes after the environment interprets the event. This continuation defines a branch of

the ITree for each element of the answer type A.

For a simple example, consider the following program.

Definition access : itree stateE nat :=
Vis Get (fun n ⇒ Ret n).

The access ITree consists of a single Vis node with a Get event and defines each branch off of the

node as a pure computation that returns the answer provided by the state access. It defines all of

these branches with the single function fun x ⇒ Ret x. As another example, consider the following
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more complicated program.

Definition increment : itree stateE unit :=
Vis Get (fun n ⇒ Vis (Put (1 + n)) (fun _ ⇒ Ret tt)).

The increment program accesses the current value of the state cell, places the successor of that value

into the state cell, and returns the unit value to indicate termination.

2.2. Equivalence Up To Tau (eutt)

One of the major advantages of the ITrees datatype is the rich equational theory provided for it

in Xia et al. (2020). The primary notion of equivalence used for ITrees is called eutt or equivalence

up to tau. Xia et al. (2019) defines eutt as a bisimulation relation that quotients out finite differences

in the number of Tau constructors. We use this relation because Tau constructors are supposed to

indicate silent steps of computation. Ignoring finite numbers of Tau constructors lets us equate two

ITrees that vary only in the number of silent computation steps.

Consider the following ITree,

Definition increment_with_taus : itree stateE unit :=
Tau (Vis Get (fun n ⇒ Vis (Put (1 + n)) (fun _ ⇒ Tau (Ret tt)))).

It has the same visible events and return values as increment, but has an extra Tau node at the head

and right before the leaves. Because Tau nodes represent silent steps of computation, we want to

equate the increment and increment_with_taus ITrees. The eutt relation is designed to contain this

equation.

In Section 2.8, we provide semantics for a simple imperative language in terms of ITrees. In this

semantics, the number of loop iterations affects the number of Tau nodes in the resulting ITree. This

means we need to ignore finite numbers of Tau nodes in order to equate two programs with identical

input/output behavior that differ in the number of loop iterations.

The eutt relation is parameterized by a relation RR over return values. In general, the relation RR is

heterogeneous, relating values over distinct types R1 and R2. The eutt RR relation is heterogeneous in
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general as well, relating values over itree E R1 and itree E R2. Intuitively, if eutt RR t1 t2, then

the Vis nodes of t1 precisely match those of t2, and if equivalent paths in t1 and t2 lead to the

leaves Ret r1 and Ret r2, then the values r1 and r2 are related by RR.

Often we are interested in homogeneous relations, RR : R → R → Prop, that relate ITrees with the

same return type. In particular, we are interested in eutt eq and denote this relation with the

symbol ≈.

The eutt relation is implemented in Coq using both inductive and coinductive techniques. Observe

the following definition of eutt:

Inductive euttF {E R1 R2} (RR : R1 → R2 → Prop) (sim : itree E R1 → itree E R2 → Prop) : itree E
R1 → itree E R2 → Prop :=

| eutt_Ret (r1 : R1) (r2 : R2) : euttF RR sim (Ret r1) (Ret r2)
| eutt_Tau (t1 : itree E R1) (t2 : itree E R2) :

sim t1 t2 → euttF RR sim (Tau t1) (Tau t2)
| eutt_Vis A (e : E A) (k1 : A → itree E R1) (k2 : A → itree E R2) :
(∀ a, sim (k1 a) (k2 a)) → euttF RR sim (Vis e k1) (Vis e k2)

| eutt_TauL (t1 : itree E R1) (t2 : itree E R2) :
euttF RR sim t1 t2 → euttF RR sim (Tau t1) t2

| eutt_TauR (t1 : itree E R1) (t2 : itree E R2) :
euttF RR sim t1 t2 → euttF RR sim t1 (Tau t2).

Definition eutt {E R1 R2} (RR : R1 → R2 → Prop) : itree E R1 → itree E R2 → Prop :=
gfp (euttF RR).

The euttF relation is an inductively defined relation, defined in terms of the sim argument. The

eutt relation is then defined as the greatest fixpoint, gfp, of euttF3. Calls to the sim argument in

the definition of euttF correspond to coinductive calls to eutt. Recursive calls to euttF correspond

to inductive calls to eutt. This method of defining eutt allows the coinductive constructors to be

called infinitely often in sequence, while only a finite number of calls to inductive constructors can

be chained without an intervening call to a coinductive constructor. Specifically, only finitely many

eutt_TauL and eutt_TauR steps, which remove a Tau from only one side, are allowed before one of the

remaining rules is used to relate the same constructor on both sides.

This definition allows us to achieve our goal of ignoring any finite difference in numbers of Tau

3In this document, all greatest fixpoints are defined using the paco library (Hur et al., 2013)

10



constructors. In particular, we can prove that spin is equivalent to itself, that Tau (Ret 0) is

equivalent to Ret 0, that increment is equivalent to increment_with_taus, and that spin is not

equivalent to Ret 0.

It is important to note that the eutt relation does not have any information about the semantics of

the algebraic effects that an event represents. It reasons exclusively about the tree structure. For

example consider the following two programs.

Definition access : itree stateE nat :=
Vis Get (fun n ⇒ Ret n).

Definition access2 : itree stateE nat :=
Vis Get (fun n1 ⇒ Vis Get (fun n2 ⇒ Ret n2)).

The first program is the same access example presented in Section 2.1. This program accesses the

value in the state cell and returns it as output. The second program makes two accesses to the

state cell and then returns the answer to the second access as the result. Intuitively, we may want

to identify these programs because they compute the same return value and output state when

given the same input state. However, they are not related by eutt. This is both because they have

different numbers of events, and because the eutt relation lacks the knowledge that state accesses

don’t change the state. In Section 2.4, we solve this problem by providing a way to give semantics

to the uninterpreted events in an ITree. With the proper interpretation, these two programs are

equated.

2.3. Monad and Iteration Structure

ITrees form a monad. Monads are a mathematical structure for representing computations with a

notion of sequential composition. For the purposes of this document, monads are defined with the

type class presented in Figure 2.2. A monad is a type family, M : Type → Type, with corresponding

ret and bind functions. An element of M A is a computation that returns a value of type A. The

ret combinator of a monad wraps up a pure value a into a monadic computation. And the bind

combinator sequentially composes two, potentially effectful, computations. That is, bind m k is the

computation that consists of executing m : M A and feeding any result of type A into the continuation
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Class Monad (M : Type → Type) :=
{
ret : ∀(A : Type), A → M A;
bind : ∀(A B : Type), M A → (A → M B) → M B }.

Class MonadIter (M : Type → Type) :=
{
monad : Monad M;
iter : ∀(A B : Type), (A → M (A + B)) → A → M B }.

Class MonadIterLaws (M : Type → Type) {̀MonadIter M} :=
{
bind_ret_l : ∀a k, bind (ret a) k ≈ k a;
bind_ret_r : ∀m, bind m ret ≈ m;
bind_bind : ∀m k1 k2, bind (bind m k1) k2 ≈ bind m (∀ x ⇒ bind (k1 x) k2);
iter_bind : ∀body a, iter body a ≈ bind (body a) (case (iter body) ret )
... }.

Figure 2.2: Monad and Iteration Typeclasses

k : A → M B to determine the rest of the computation.

Figure 2.2 also presents the monad iterator type class, MonadIter. Instances of MonadIter, in addition

to implementing the functions required by Monad, must implement a generalization of a do-while loop

called iter. The iter function extends do-while loops to include input and output values. The iter

function defines a loop in terms of the a loop body, body : A → M (A + B). The type A represents

inputs to the loop as well as signals to continue running the loop. In the execution of the loop,

continuation signals are fed into the loop body as input to compute the next iteration. The type B

represents final outputs to the loop. Given an initial input, init : A, the result of iter body init,

of type M B, is obtained by computing body init, and binding a continuation that terminates the

loop if it is passed a B value, and reruns the loop if given an A value. We call a type family that

satisfies the MonadIter typeclass, an iterable monad. ITrees are an example of an iterable monad.

Concrete implementations of these typeclasses for ITrees can be founded in Figure 2.3. The ret

combinator is implemented by the Ret constructor. The bind combinator is implemented by grafting

the continuation k onto each of the leaves of the ITree m. It is implemented as a cofixpoint in Coq.

The iter combinator can be implemented in terms of bind, again using a cofixpoint.

ITrees satisfy a collection of equations, including the well-known monad laws, the less well-known

12



Definition ret_itree {E R} (r : R) : itree E R := Ret r.

CoFixpoint bind_itree {E A B} (m : itree E A) (k : A → itree E B) : itree E B :=
match m with
| Ret a ⇒ k a
| Tau t ⇒ Tau (bind_itree t k)
| Vis e kvis ⇒ Vis e (fun x ⇒ bind_itree (kvis x) k )
end.

CoFixpoint iter_itree (body : A → itree E (A + B)) (a : A) :=
bind (body a) (fun ab : A + B ⇒ match ab with

| inl a ⇒ Tau (iter_itree body a)
| inr b ⇒ Ret b
end).

Class MonadIter {E} (itree E) := {|
ret := ret_itree;
bind := bind_itree;
iter := iter_itree |}.

Figure 2.3: ITree Typeclass Instance Definitions

Definition interp_body {E M : Type → Type} {̀MonadIter M} {R : Type}
(handler : ∀A, E A → M A)
(t : itree E R) : M (itree E R + R) :=
match t with
| Ret r ⇒ ret (inr r)
| Tau t ⇒ ret (inl t)
| Vis e k ⇒ bind (handler _ e) (fun a ⇒ ret (inl (k a)))
end

Definition interp {E M : Type → Type} {̀MonadIter M} {R : Type}
(handler : ∀A, E A → M A) : itree E R → M R :=

iter interp_body.

Figure 2.4: Interpretation Definition

iteration laws, and a collection of ITree specific equations regarding Vis and Tau nodes. For example,

the iteration laws contain an equation, named iter_bind, which expresses that iter loops are

equivalent to their unfoldings. A selected subset of these equations are presented in Figure 2.2.

These equations, using the eutt relation as the notion of equivalence, form the primary interface for

reasoning about semantics written with ITrees. Repeated rewrites using these equations allow us

reason about the execution of programs by simplifying their denotations.

2.4. Interpretation

The inert event nodes in an ITree are typically used to represent algebraic effects. Recall the stateE

event type family, presented again in Figure 2.5. ITrees with events in stateE represent simple
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Inductive stateE : Type → Type :=
| Get : stateE nat
| Put : nat → stateE unit.

Definition stateITree (A : Type) : Type :=
nat → itree voidE (nat * A).

Definition stateE_handler : ∀A, stateE A → stateITree A :=
fun _ e ⇒
match e with
| Get ⇒ fun s ⇒ Ret (s,s)
| Put s ⇒ fun _ ⇒ Ret (s, tt)
end.

Definition interp_state : ∀A, itree stateE A → stateITree A) :=
interp stateE_handler.

Figure 2.5: Example State Event Signature

stateful programs, which can read and write to a single state cell which contains a natural number

value. However, as discussed at the end of Section 2.2, this representation is missing information

about how stateful programs actually run.

In order to obtain the desired equational theory, we need to provide semantics for the inert events that

maps the events to the algebraic effects that they represent. This mapping requires the representation

of effectful computations to have an iterable monad structure. For example, figure 2.5 provides the

stateITree type family which adapts the standard state monad for this purpose. The stateItree A

type contains functions from natural numbers, the type of values in the state cell, to ITrees that

return a value of A along with another natural number, the updated state cell. This type is an

iterable monad represents possibly divergent stateful computations, and it can be assigned a lawful

monad iterator structure based closely on the iterable monad structure of ITrees.

We assign semantics to an event signature using a handler. Given an event signature E and

an iterable monad M, a handler is a parametric function from E to M, with type ∀ A, E A → M A.

Figure 2.5 provides the handler for stateE. The stateE_handler function maps Get events to stateful

computations that return the current state as both the output state and the return value, modelling

a state access. It maps Put s events to stateful computations that ignore their input state, return

s as the new output state, and return the placeholder value tt as their output, modelling a state

14



mutation.

ITrees support the definition of interpreters, functions from ITrees to computations modeled as an

iterable monad. Given a handler, an interpreter traverses an ITree and use the handler to transform

its inert events into effectful programs. That is, given a handler h, it transforms an ITree, Vis e k

into the effectful computation that consists of h e sequentially composed with interpretation of k with

the same handler. In order to create this interpreter, the type family of effectful computations needs

three things: a way to represent pure computations to interpret Ret nodes; a way to sequentially

compose effectful computations to insert handled events back into place; and a form of nonterminating

computation in order to represent potentially infinite ITrees. These requirements correspond exactly

to the constraints of the monad iterator typeclass which requires: a ret combinator for pure

computations; a bind combinator for sequential composition; and an iter combinator loop.

Figure 2.4 presents the implementation of the interp function which maps handlers to interpreters.

The interp function uses iter to create a loop of the interp_body function. Recall that iter loops

rely on a continuation signal type as well as an output type. The iter loop used to define interp

uses uninterpreted ITrees, itree E R, as the continuation signal. The loop body accomplishes one

step of the tree traversal. If it encounters a Ret r node, it terminates the loop with ret (inr r). If it

encounters a Tau t node, it removes the Tau and returns the rest of the tree to be traversed. The iter

combinator reruns the loop body on inl values, so this is accomplished by returning ret (inl t).

Finally, if it encounters a Vis e k node, it uses the handler to produce a computation handler e, and

uses bind to sequentially compose the handled event with the continuation k which has been marked

for further traversal. Intuitively, the intermediate values produced by interp_body can be thought of

as computations which can return either return values or ITrees. Executing this loop with iter has

the effect of traversing through all possible intermediate ITrees, and evaluating away their events.

With this machinery, we can revisit our simple state example. Recall the stateful computations,
Definition access : itree stateE nat :=
Vis Get (fun n ⇒ Ret n).

Definition access2 : itree stateE nat :=
Vis Get (fun n1 ⇒ Vis Get (fun n2 ⇒ Ret n2)).
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Class ReSum (E1 E2 : Type → Type) :=
resum : ∀A, E1 A → E2 A.

Notation "E1 -< E2" := (ReSum E1 E2) (at level 10).

Definition trigger {E1 E2 A} {̀E1 -< E2} (e : E1 A) : itree E2 A :=
Vis (resum e) (fun x ⇒ Ret x).

Figure 2.6: ReSum Definition

Given the interpreter defined in Figure 2.5, the Get events will be given interpreted as actual state

accesses. The resulting stateful computations take equal initial states to eutt result computations,

which is an equivalence relation over stateful computations. Both of the resulting computations are

equivalent to the following computation.
Definition access_interpreted : stateITree nat :=

fun (n : nat) ⇒ Ret (n, n).

2.4.1. Subevents

In practice, ITrees often end up using an event type family E that is a composition of several smaller

type families combined in a large sum. This can easily clutter and complicate the notation. To avoid

this burden, the ITrees library introduces the ReSum typeclass defined in Figure 2.6. An instance

of ReSum E1 E2, written E1 -< E2, is a function that injects an element of E1 A into E2 A. It can be

thought of as a kind of subevent typeclass. The ReSum typeclass allows for the definition of the

trigger function in Figure 2.6. The trigger function takes an event e1 : E1 A and injects it into

itree E2 A by injecting e1 into E2 A and placing that in a Vis node.

2.5. Presenting Mixed Inductive CoInductive Relations

In order to reason about ITrees, we will need to introduce several other relations that mix inductive

and coinductive reasoning priciples similarly to eutt. These relations are defined with a large number

of different constructors which can be cumbersome present and reason about. For clarity, these

definitions will be presented as a series of inference rules. For instance, figure 2.7 presents the

definition of eutt in this format. As is standard for inference rules, the propositions above the line

are assumptions, the proposition below the line is the conclusion, and all free variables are assumed

to be universally quantified. Each inference rule corresponds to one of the constructors used to
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[EuttRet]
RR r1 r2

eutt RR (ret r1) (ret r2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−− [EuttTau]

eutt RR t1 t2

eutt RR (Tau t1) (Tau t2)
=============================

[EuttVis]
∀a, eutt RR (k1 a) (k2 a)

eutt RR (Vis e k1) (Vis e k2)
================================== [EuttTauL]

eutt RR t1 t2

eutt RR (Tau t1) t2
−−−−−−−−−−−−−−−−−−−−−−

[EuttTauR]
eutt RR t1 t2

eutt RR t1 (Tau t2)
−−−−−−−−−−−−−−−−−−−−−−

Figure 2.7: Inference Rules for eutt

define euttF. Inference rules with a single line correspond to constructors that use only inductive

self reference. Inference rules with a double line correspond to constructors that use only coinductive

self reference. These coinductive inference rules perform the same tasks as references to the sim

argument in the definition of euttF.

The primary weakness of presenting inductive/coinductive relations this way is that the implicit

quantification of parameters in these rules removes an opportunity to explicitly specify the types of

these parameters. We make up for this shortcoming by specifying the types in the declaration of the

definition. For example, observe the following definition of eutt.

Definition 1 (Equivalence up to tau (eutt)). Given:

• an event signature E;

• return types R1 and R2;

• and a return relation over R1 and R2, RR,

equivalence up to taus with RR, a relation between itree E R1 and itree E R2, is defined with the

inference rules presented in Figure 2.7. We write this relation as eutt RR t1 t2.

Going forward in this document, relations defined with a mixture of induction and coinduction will

be presented in this style.
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CoFixpoint interp_mrec {D E R} (bodies : ∀A, D A → itree (D +’ E) A) (t : itree (D +’ E) R) :
itree E R :=

match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec bodies t)
| Vis (inl1 d) k ⇒ Tau (interp_mrec bodies (bind (bodies _ d) k))
| Vis (inr1 e) k ⇒ Vis e (fun x ⇒ interp_mrec bodies (k x))
end.

Definition mrec {D E A} (bodies : ∀A, D A → itree (D +’ E) A) (d : D A) :=
interp_mrec bodies (trigger d).

Figure 2.8: mrec Definition

Inductive evenoddE : Type → Type :=
| even (n : nat) : evenoddE bool
| odd (n : nat) : evenoddE bool.

Definition evenodd_body : ∀A, evenoddE A → itree (evenoddE +’ E) A :=
fun _ eo ⇒
match eo with
| even n ⇒ if n =? 0

then Ret true
else trigger (odd (n -1))

| odd n ⇒ if n =? 0
then Ret false
else trigger (even (n -1))

end.

Definition evenodd : evenoddE bool → itree E bool :=
mrec evenodd_body.

Figure 2.9: evenodd Example

2.6. Mutual Recursion

The ITrees library also provides a mutual recursion operator, mrec. The mrec operator works by

using events as a form of syntax indicating a recursive function call site. The mrec operator defines

recursive computation in terms of one level of unfolding of the recursive calls. The definition of mrec

is presented in Figure 2.8. It utilizes an event type family D which represents recursive function calls.

An event d : D A represents a recursive function call that returns a value of type A. The event d

packages together the choice of the function being called with the arguments being supplied to that

function. The bodies function assigns every recursive function call event, d : D A, a corresponding

ITree in itree (D +’ E) A. This ITree represents the evaluation of the recursive function call in terms

of further inert D events, acting as syntactic recursive calls. The interp_mrec, defined in Figure 2.8,
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function takes an ITree with syntactic recursive calls, replaces each call d : D A with the unfolded

function body bodies d, and corecursively repeats this process with the resulting ITree. Given this

function, mrec is defined by applying interp_mrec to a tree that consists of triggering a single event,

which represents the initial function call.

For a concrete example, observe the definition of evenodd in Figure 2.9. This mutually defines both

an even and odd function. To accomplish this, it first defines evenoddE, an event type that packages

together the names of the function calls, even and odd, and their arguments, a natural number in

each case. Both the even and odd events require a natural number argument. Both even and odd

events have the type evenoddE nat, which means they both have natural numbers as their response

types. This shared response type signifies that both functions return a boolean value. Then we

must define the bodies of these functions with evenodd_body. The evenodd_body function first pattern

matches on its argument to determine which function is being called. Given an element of evenoddE

it returns an element of itree (evenoddE +’ voidE) bool. This allows the returned ITree to contain

events that represent more recursive calls. We compute even by computing triggering an odd (n - 1)

event and compute odd by triggering an even (n - 1) event. Both functions have a trivial base case

at 0. Finally, we apply the mrec function which intuitively takes an initial function call event, and

keeps unfolding it by applying evenodd_body and unfolding any function call events evenodd_body

produces.

2.7. Heterogeneous Equivalence Up To Taus (rutt)

While eutt is a very useful relation, its constraint to only relate ITrees with precisely equal events

is too restrictive for the purposes of some work in this dissertation. Suppose we want to relate

ITrees that have different event signatures. This is essential for developing a trace model of ITrees,

presented in Chapter 3, as well as reasoning about mutually recursive functions. In this section, we

introduce the rutt relation, which generalizes the eutt relation with the capability to choose what

pairs of events to relate at the head of Vis nodes, as well as the ability to constrain the possible

result types.

First, we will briefly discuss how we choose events and response types for events. Figure 2.10 presents
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Definition PreRel (E1 E2 : Type → Type) := ∀A B, E1 A → E2 B → Prop.

Definition PostRel (E1 E2 : Type → Type) := ∀A B, E1 A → E2 B → A → B → Prop.

Inductive SumPreRel {D1 D2 E1 E2} (RPre1 : PreRel D1 E1) (RPre2 : PreRel D2 E2) : PreRel (D1 +’ D2)
(E1 +’ E2) :=

| sumprerel_inl1 A B (d : D1 A) (e : E1 B) : RPre1 A B d e →
SumPreRel RPre1 RPre2 (inl1 d) (inl1 e)

| sumprerel_inr1 A B (d : D2 A) (e : E2 B) : RPre2 A B d e →
SumPreRel RPre1 RPre2 (inr1 d) (inr1 e).

Notation "RPre1 ’⊕’’ RPre2" := (SumPreRel RPre1 RPre2) (at level 10).

Inductive SumPostRel {D1 D2 E1 E2} (RPost1 : PostRel D1 E1) (RPost2 : PostRel D2 E2) : PostRel (D1
+’ D2) (E1 +’ E2) :=

| sumpostrel_inl1 A B (d : D1 A) (e : E1 B) (a : A) (b : B) : RPost1 A B d e a b →
SumPostRel RPost1 RPost2 (inl1 d) (inl1 e) a b

| sumpostrel_inr1 A B (d : D2 A) (e : E2 B) (a : A) (b : B) : RPost2 A B d e a b →
SumPostRel RPost1 RPost2 (inr1 d) (inr1 e) a b.

Notation "RPost1 ’⊕’’’ RPost2" := (SumPostRel RPost1 RPost2) (at level 10).

Figure 2.10: Heterogeneous event relations

the definitions of both PreRel and PostRel. Elements of PreRel can be thought of as relations over

event types, quantifying over all possible response types. The rutt relation uses PreRel elements as

a kind of precondition for relating events. Only events that satisfy a particular precondition are

allowed to progress in an rutt simulation proof. Elements of PostRel can be thought of as functions

that map events to relations over the response type. The rutt relation uses the result of this PostRel

function applied to the events as a postcondition that can be assumed to hold on any responses to

events that satisfy the precondition. Below these definitions, Figure 2.10 presents variants of the

sum relation for both PreRel and PostRel.

Definition 2 (HeteRogeneous equivalence up to taus (rutt)). Given:

• event signatures E1 and E2; return types R1 and R2;

• a precondition relation over E1 and E2, RPre;

• a postcondition relation over E1 and E2, RPost; and

• a return relation over R1 and R2, RR,

heterogeneous equivalence up to RPre, RPost and RR, a relation between itree E1 R1 and itree
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[ruttret]
RR r1 r2

RPre; RPost ⊢ (ret r1) ≈RR (ret r2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[rutttau]
RPre; RPost ⊢ t1 ≈RR t2

RPre; RPost ⊢ (Tau t1) ≈RR (Tau t2)
==================================== [rutttaul]

RPre; RPost ⊢ t1 ≈RR t2

RPre; RPost ⊢ (Tau t1) ≈RR t2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[rutttaur]
RPre; RPost ⊢ t1 ≈RR t2

RPre; RPost ⊢ t1 ≈RR (Tau t2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ruttvis]
RPre e1 e2 ∀ a b, RPost e1 e2 a b→ RPre; RPost ⊢ (k1 a) ≈RR (k2 b)

RPre; RPost ⊢ Vis e1 k1 ≈RR Vis e2 k2
============================================================================

Figure 2.11: rutt Definition

E2 R2, is defined with the inference rules presented in Figure 2.11. We write this relation as

RPre; RPost ⊢ t1 ≈RR t2.

The rutt relation is defined very similarly to eutt, with the primary difference being the ruttvis

rule. Intuitively, this rule says that if two events are in the precondition, we can assume that their

evaluated answers satisfy the postcondition. Concretely, when relating two ITrees, Vis e1 k1 and

Vis e2 k2, rutt first requires that the precondition, RPre, holds on e1 and e2. It further requires that

given any possible responses, a and b, that satisfy RPost A B e1 e2, the continuations k1 a and k2 b

must be related as well.

Most eutt theorems, including ones regarding monad iterator combinators and transitivity, can be

generalized to rutt theorems. One use of rutt is to provide a good reasoning principle for mrec.
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Theorem 1 (Mutual Recursion Respects Heterogeneous Equivalence). If recursive call events init1

and init2 are contained in the precondition invariant RPreInv, and given any recursive call events,

d1 and d2, contained in RPreInv, RPreInv ⊕′ RPre; RPostInv ⊕′′ RPost ⊢ bodies1 d1 ≈RPd

bodies2 d2 where RPd = RPostInv d1 d2, then

RPre; RPost ⊢ mrec_spec bodies1 init1 ≈RPi mrec_spec bodies2 init2

where RPi = RPostInv init1 init2.

This theorem reduces proving an rutt bisimulation between two ITrees defined with mrec to proving

an rutt bisimulation between the function bodies. This eliminates a layer of recursive reasoning,

potentially encapsulating a coinductive proof. The bisimulation over the function bodies contains

extra event pre- and postconditions. The event relations over the base event signature E, RPre and

RPost, are present in both the hypothesis and conclusion. The event relations over the recursive call

event signature D, RPreInv and RPostInv, are present only in the hypothesis. These relations enforce

pre- and postconditions on recursive calls. Intuitively, they enforce that each recursive call on the

left must be matched by a recursive call on the right, such that the pair satisfy the precondition,

and enable the assumption that these recursive calls return results that satisfy the postcondition.

2.8. Example Language (Imp)

This section presents the denotational semantics for a simple stateful language using ITrees. This

semantics serves as an example of a typical ITrees semantics. A typical path from a language syntax

to an ITrees semantics consists of: a denotation function from programs to ITrees over an event type

family, E1, with constructors for every effect in the language; and an interpreter from that ITree

into a target monad that is a stack of effect monad transformers applied to itree E2 for some other

event type family, E2. This second event type family, E2, contains constructors for effects that are

represented well by uninterpreted events. Common choices for E2 include voidE, the empty event

type family, and IOE, the event type family which represents input and output from the user.

Figure 2.12 gives (an excerpt of) a denotational semantics for a simple imperative language called

IMP (adapted from Software Foundations Pierce et al. (2018)). The type com defines the syntax of

commands, which include skip, variable assignment, sequential composition, conditionals, and while
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Expressions e ::= x | n | e+ e | e− e | e ∗ e
Commands c ::= skip | x := e | c1 ; c2 | while (e) do {c}

| if (e) then {c1} else {c2}

(* IMP Events *)
Inductive ImpE : Type → Type :=
| GetE (x : var) : ImpE nat
| SetE (x : var) (v : nat) : ImpE unit.

Definition while (step : itree ImpE (unit + unit)) : itree ImpE unit :=
iter (fun _ ⇒ step) tt.

J·K : Command→ itree impE unit

JskipK = ret tt

Jx := eK = v ← JeK ; ; trigger (SetE x v)

Jc1 ; c2K = Jc1K ; ; Jc2K
Jwhile (e) do {c}K = while(v ← JeK ; ;

if (JeK) then {Jc1K ; ; ret (inl tt)} else {ret (inr tt)})
Jif (e) then {c1} else {c2}K = if (JeK) then {Jc1K} else {Jc2K}

Definition handle_ImpE : ∀X, ImpE X → stateT st Delay X := (* omitted *)

Definition interp_imp (t : itree ImpE unit) : stateT st Delay unit :=
interp handle_ImpE t.

Figure 2.12: IMP denotational semantics (excerpt).

loops. The events interface ImpE defines the GetE and SetE events, which model reading and writing

to the state. The function denote_imp builds an ITree with ImpE events. The case for assignment uses

trigger to create a SetE node. (GetE events are used to read from the global state in the denotations

of expressions, which are omitted here.) The denotations of sequential composition and conditionals

are built straightforwardly from the ITree’s bind operator. The semantics of while is defined using

while, which is a simple wrapper around the ITree’s iter combinator.

Once the syntax has been given an ITrees denotation, it is straightforward to complete the semantics

by interpreting its events into an appropriate state monad. Here, st is a type of maps from

vars to nats. The type of handle_ImpE shows that the resulting computation lives in the monad

stateT st Delay unit, which is equal to st → itree E (st * unit). There are no residual effects:

and when given an initial state, an IMP program either diverges or terminates, yielding some updated
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state (and the unit value).

The ITrees library contains utilities for lifting the equational theory of ITrees through interpreters

such as interp_imp, which allows for complex, termination sensitive properties of these languages to

be proven without any explicit coinduction.
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CHAPTER 3

Dijkstra Monads Forever

This chapter was previously published as Lucas Silver and Steve Zdancewic. Dijkstra monads forever:

Termination-sensitive specifications for interaction trees. Proc. ACM Program. Lang., 5(POPL),

jan 2021. doi: 10.1145/3434307. URL https://doi.org/10.1145/3434307. I was the primary author

and did most of the research.

3.1. Introduction

Chapter 1 discussed a variety of frameworks for formal verification. Despite the success of these

approaches—these tools have been used to verify the correctness of applications ranging from

concurrent mailbox protocols, to cryptography primitives (Protzenko et al., 2020), to Rust library

code (Jung et al., 2017)—there remain improvements to be made. For one thing, most of these

systems are rooted in Floyd-Hoare logic, which makes them most naturally suited to proving partial

correctness. Termination and other liveness properties are considered only separately, outside the

framework, or not at all. (A notable exception is Carbonneaux et al. (2017)’s work on verified

resource analysis.) For another, proof support for interactive programs—programs that exchange

data with their environments—remains challenging, because the possibility of such interactions

complicates both specifications and reasoning. On top of these issues, the way in which the program

semantics is represented also matters. For instance, relationally-specified operational semantics,

as used in VST (via CompCert) and in Iris, cannot be executed—it’s not possible to extract an

executable program from the semantics described that way. This makes such frameworks incompatible

with tools like QuickChick (Lampropoulos and Pierce, 2018), which requires executable specifications

for testing; it also precludes their use for reasoning about Coq programs (or domain specific languages

shallowly embedded in Coq) because it relies on a deep embedding of a language. Such representation

choices matter in practice.

This chapter describes a framework for verifying termination-sensitive properties of possibly divergent,

interactive programs in the proof assistant Coq. The first ingredient is the representation of such
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programs as interaction trees (ITrees), following the work of Xia, et. al. [2020]. ITrees provide a

general-purpose way of defining the semantics of impure, possibly diverging computations, while

retaining extractability (and hence executability). The second ingredient is an extension of the

methodology for deriving Dijkstra specification monads, proposed by Maillard, et. al. [2019]. Dijkstra

monads are a natural fit for ITrees: the core ITree datatype itself is a monad, and we express ITree

computations by interpreting events into monadic operations, yielding a computation type built

out of a stack of monad transformers. Previous work on Dijkstra monads finessed the issue of

nonterminating programs—their computation types bottom out in the Identity monad and, therefore,

lacked nonterminating programs. In contrast, the monads we investigate in this chapter bottom out

in the ITree monad for some event type family E. We pay special attention to the case of Capretta’s

Delay monad (Capretta, 2005), which is what remains of an ITree once all of its externally-visible

events have been interpreted away.

The Delay monad precisely characterizes nonterminating behaviors, which is what grants ITrees

their expressiveness, but it also means that we must take divergence into account when reasoning

about them—this is one significant challenge that we show how to address in this chapter. The

reward for this effort is that we obtain termination-sensitive specifications that are more expressive

than those available with Floyd-Hoare-style partial correctness assertions.

As a simple example, consider the following imperative program that computes the square root of

the natural number n:

Definition nat_sqrt : com :=
i := 0;
while ∼(i * i = n) do {
i := i + 1;

}.

A partial correctness specification of this program says “If the program terminates, then i * i = n.”

The stronger specification that we are able to prove instead says “If there exists a natural number k

such that k * k = n, then the program terminates and i = k; otherwise the program diverges.” While

partial correctness assertions are suitable for many scenarios, termination-sensitive specifications are
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essential for proving liveness and availability properties.

Aside from accounting for nontermination, ITrees permit the description of interactive programs.

“Uninterpreted” events in an ITree can be viewed as calls to the environment. Combining non-

termination with such interaction leads to technical challenges both for defining useful notions of

specification—what does it mean to say that an interactive computation meets a specification?—

and for establishing metatheoretic properties—like soundness—of the reasoning principles. This

is a second significant challenge that we address in this chapter though the introduction of trace

specifications.

As a simple example trace specification, consider the following interactive program that repeatedly

queries its environment for a boolean value, stopping only when the result is false:

Definition queryUntilFalse := while (query()) do { skip }.

One provably correct specification of this program’s behavior says “Either the program diverges and

the environment supplied an infinite stream of trues; or, the program halts and the environment

provided some finite number of trues followed by false”.

In summary, this chapter makes the following contributions.

• In Section 3.3 we show how to extend prior work on Dijkstra Monads to account for the

potentially nonterminating behavior allowed by the Delay monad. In doing so, we define

DelaySpec, a specification monad suitable for expressing properties about Delay computations.

This lets us apply the Dijkstra monad methodology to derive an appropriate specification

monad for computations that combine state and nontermination.

• Building on DelaySpec, Section 3.4 defines Floyd-Hoare logic-style specifications, with pre- and

post-conditions, and accompanying rules for reasoning about StateDelay computations. As in

the example above, the natural definition is stronger than either the usual “total correctness” or

“partial correctness” interpretations of Floyd-Hoare-triples—the post conditions can talk about

27



the termination behavior of the computation explicitly (unlike total correctness, which implies

termination, or partial correctness, which assumes it). Moreover, we show how to recover

soundness proofs of the usual partial-correctness Hoare logic rules for a simple imperative

language whose semantics is defined denotationally via ITrees.

• To reason about interactive ITree computations, we must go beyond the Delay and StateDelay

monads. Unfortunately, the “obvious” generalization of DelaySpec to full ITrees fails to satisfy

the monad laws, and is therefore unsuitable as a specification monad. The crux of the problem

is that bind uses a continuation that takes only an element of the parameter type and completely

ignores the sequence of events that lead to producing that element. This motivates us to seek

a specification in terms of traces of an ITree. Section 3.5 develops the technical machinery

needed to define the type of such traces as just another instance of ITrees proper. These

traces are connected to ITrees by way of a general notion of ITree refinement, which is itself

implemented in terms of a generalization of the standard weak simulation relation for ITrees.

• With the above definitions in hand, Section 3.6 defines TraceSpec, a Dijkstra Monad suited to

reasoning about possibly nonterminating, interactive ITree programs. Proving the soundness

of such specifications is non-trivial and somewhat technical—doing so requires us to build

suitable simulation relations to establish that TraceSpec is a monad morphism. Once that is

done, however, such specifications soundly expose the behavior of the program as a “log” of its

interactions with the environment, providing a convenient abstraction for verifying properties

like the one about the queryUntilFalse example above.

All of the results mentioned above have been formally verified in Coq, and the framework is designed

to be used with the Interaction Trees Library.

Our approach to defining Dijkstra Monads for ITrees is inspired by prior research in this area,

especially that of Maillard et al. (2019). We recapitulate the most relevant aspects of that work as

needed throughout the paper. Before diving into the details of DelaySpec and TraceSpec, we first

give some background about Dijkstra monads (Section 3.2).
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3.2. Dijkstra Monads

Dijkstra monads (Swamy et al., 2013; Maillard et al., 2019) are a flexible approach to the specification

and verification of effectful programs modeled with monads. They can represent specifications over

a wide range of algebraic effects including state, exceptions, and IO. A Dijkstra monad comes about

from the interaction of three objects:

• A monad M , called the computational monad;

• A monad W equipped with an ordering relation, called the specification monad;

• And a function,Θ, from M to W , of type ∀A. M A→W A, called the effect observation.

The computational monad, M, is the type of programs which the specifications are reasoning about.

The specification monad, W, is the type of the specifications, and the order models specification

refinement. The effect observation is a map from programs to the most precise specification that

they satisfy. The most precise specification is defined as the least specification according to the

refinement ordering. Given a specification monad, W , and two specification w1 and w2 in W A, we

write that (w1, w2) is in the ordering relation as W ⊢ w1 ≤ w2. And if W ⊢ w1 ≤ w2, then we say

that w1 refines w2.

Section 3.2.1 presents and motivates the restrictions we place on valid specification monads and effect

observations. But the currently presented material is enough to define Dijkstra monads. Intuitively,

Dijkstra monads use the provided notions of specifications and mappings from computations to

specifications to define when a computation satisfies a specification.

Definition 3 (Dijkstra monad). Given a computation monad, M , a specification monad, W , an

effect observation from M to W , Θ, and a specification w : W A, the corresponding Dijkstra monad

is the set of computations m : M A such that W ⊢ Θ m ≤ w. We write that m is in the Dijkstra

monad defined by M , W , Θ, and w as Θ ⊢ m ∈ w.

For a concrete example, we can provide a Dijkstra monad for pure computations. The computation
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monad is the identity monad, which maps any type A to itself.

To first approximation, the specification monad is the type family:

IDSpec A := (A→ P)→ P

The actual type family has further restrictions, namely monoticity, which are discussed in Section 3.3.

The IDSpec A type is the type of sets of sets over A. It also is the type of continuations into

propositions. The simplest elements of IDSpec are λp.⊤ and λp.⊥, respectively the total and empty

sets. Another simple example, in this case of IDSpec N, is λp.even ⊆ p. This is the set of all

supersets of the set of even natural numbers. We present the monadic structure and specification

refinement orders in Section 3.2.2 after introducing the full definitions for specification monads and

effect observations in Section 3.2.1.

The effect observation from the identity monad to the ID specification is the function:

ΘID a := λp.(a ∈ p)

The effect observation maps a computation, a, to the set of sets that contain a.

3.2.1. Specification Monads and Effect Observations

A specification monad consists a type family W , which contains the actual specifications, and a

notion of refinement over those specifications. Formally, refinement is modelled with a family of

partial orders, R ⊆W A×W A for each type A. This family of partial orders induces a family of

equivalence relations.

Definition 4. Given a type family W , two elements of W A, w1 and w2, are considered equivalent

if W ⊢ w1 ≤ w2 and W ⊢ w2 ≤ w1. In this case we write W ⊢ w1
∼= w2.

For W to be a valid specification relation, it must provide definitions for ret and bind that respect

the monad laws using this induced equivalence relation.
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Furthermore, the refinement relation needs to monotonic with respect to the bind operator.

Definition 5 (Monotonicity with respect to bind). Given a monad W with a family of partial orders

RX ⊆ W X ×W X, RX is said to be monotonic with respect to bind if the following implication

holds. Given any monad elements, w1, w2 in W A, and continuations, k1, k2 in A → W B, such

that (w1, w2) ∈ RA and given any a in A, (k1 a, k2 a) ∈ RB, then (bind w1 k1, bind w2 k2) ∈ RB.

Stated informally, the refinement relation is monotonic with respect to bind, if we can prove refinement

of sequentially composed specifications by separately comparing the head and tail specifications.

This requirement ensures that we can build proofs of specification refinement out of refinements of

smaller specifications. It plays a key role in ensuring that a generalization of the Hoare sequencing

rule holds.

Definition 6 (Specification monad). A type family W along with a family of partial orders RA ⊆

W A×W A form a specification monad if W forms a monad according to the family of equivalence

relations induced by R and if R is monotonic with respect to the corresponding bind function.

An effect observation between a computational monad M and a specification monad W is a function

Θ : ∀A,M A → W A. This function is required to be a monad morphism, meaning that it maps

ret and bind in the computational monad to ret and bind in the specification monad. This forces

the effect observation to preserve a relation between sequential composition of computations and

sequential composition of specifications. In concert with the requirement that the refinement relation

respects bind, this allows proofs that programs satisfy specifications to break down cleanly with

sequential composition.

Definition 7 (Effect observation). Given a monad M and a specification monad W , a function

Θ : ∀A,M A→W A is an effect observation if the following equations hold:

• for any a in A, W ⊢ Θ (ret a) ∼= ret a;

• for any m in M A and k in A→M B, W ⊢ Θ(bind m k) ∼= bind (Θ m) (Θ ◦ k).
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3.2.2. Base Specification Monads

Many commonly used monads can be expressed in terms of a stack of monad transformers. These

monads include computations with multiple kinds of effects. For example, computations with both

state and exceptions can be represented as the state transformer applied to the exception transformer

applied to the identity monad. Maillard et. al. [2019] presents a general technique for producing

specification monads for such computation monads. It relies on identifying an appropriate base

specification monad, a specification monad for the identity monad, and applying the same sequence

of monad transformers used to produce the computation monad to the base specification monad.

The primary base specification monad used in that work is the previously introduced IDSpec type

family:

IDSpec A := (A→ P)→ P

As IDSpec is a monad, we need to provide definitions for ret and bind.

ret a := λp.(a ∈ p)

bind w k := λp.((λa.(p ∈ k a)) ∈ w)

The ret a specification is the set of all sets that contain the element a. And the bind w k specification

builds a set of sets over B using w : IDSpec A and k : A→ IDSpec B. This set contains all predicates

p such that w accepts the set of elements of a : A where k a accepts p. This definition is far more

complicated than that of ret, but we can be confident it is correct because it satisfies the constraints

of specifications monads.

The effect observation from the identity monad to the ID specification type is the same as ret.

ΘID a := λp.(a ∈ p)
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The refinement relation is defined as

IDSpec ⊢ w1 ≤ w2 := ∀p.(w2 ⊆ w1)

This definition makes sense when viewed in context of proving a computation satisfies a specification.

For example, consider the proposition that the computation 2 satisfies the specification which contains

all supersets of the set of even natural numbers, λp.even ⊆ p. The following logical propositions are

all logically equivalent, and this equivalence can be justified simply by unfolding definitions.

ΘID ⊢ 2 ∈ (λp.(even ⊆ p))

IDSpec ⊢ ΘID 2 ≤ (λp.(even ⊆ p))

(λp.(even ⊆ p)) ⊆ (ΘID 2)

(even ⊆ p)→ (2 ∈ p)

This demonstrates that the proposition ΘID ⊢ 2 ∈ λp.even ⊆ p is equivalent to the proposition that

2 is contained in every superset of the even natural numbers. This is obviously true because 2 is

even.

Performing the same simplification for an abstract computation and specification can further illustrate

how these definitions work together. Suppose there is a computation m and a specification w, and

you want to prove that m satisfies w. The following equations are justified purely by unfolding

definitions.

ΘID ⊢ m ∈ w

IDSpec ⊢ ΘID m ≤ w

w ⊆ (ΘID m)

∀p.(p ∈ w → m ∈ p)

The proposition that m satisfies the specification w reduces to the proposition m is contained in all
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predicates contained in w. In order words, w contains no properties that exclude m.

With IDSpec as a base specification monad, we can construct specification monads for more expressive

computation monads. Applying the state monad transformer to IDSpec yields the type

StateSpec S A := S → ((S ×A)→ P)→ P

This is the type of functions from states into IDSpec’s over state paired with the return type. Just

as the instances of ret and bind can be automatically generated, we automatically generate a

refinement relation and an effect observation from those defined with IDSpec.

StateSpec S ⊢ w1 ≤ w2 := ∀s, IDSpec ⊢ w1 s ≤ w2 s

ΘS m s := (m s) ∈ ΘID

Note that StateSpec S A is isomorphic to ((S * A) → Prop) → (S → Prop), the type of functions

from postconditions to preconditions over stateful computations. With this in mind, the derived

effect observation is the weakest precondition function.

3.3. Delay Specification Monad

Maillard et. al. [2019] uses the identity monad as the most basic form of computation. In a

strongly normalizing base logic like Coq, all elements of the identity monad represent terminating

computations. Representing possibly divergent computations requires a monad based on coinductive

types. This section presents the Delay monad and uses that to model possibly divergent computations.

This is sufficient for specifying programs with either no effects other than nontermination, or that

can be modelled by a stack of monad transformers applied to the Delay monad. Section 3.6 provides

tools to deal with programs with external, uninterpreted events like IO or specific system calls.
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3.3.1. Computational and Specification Monad Definitions

The computational monad is implemented as a form of ITrees with no visible event nodes. This is

the Delay monad, itree voidE.

To a first approximation, the specification monad is the type of sets of sets over Delay A,

(Delay A→ P)→ P

This is nearly identical to the IDSpec monad presented in Section 3.2, with Delay A replacing A.

This is also the type of backwards predicate transformers over the Delay monad. The full, possibly

divergent computation is the output, the set over those computations is the output predicate, and

there is no notion of input so the output predicate is mapped to a proposition.

The actual specification monad type introduces two extra constraints. First, specifications only

contain predicates that respect the eutt relation.

Definition 8 (Respecting eutt). A predicate, p, of type Delay A→ P respects eutt if, given two

elements of Delay A, t1 and t2, that are contained in the relation eutt eq then p contains t1 if and

only if p contains t2.

This restriction rules out predicates that distinguish between trees that only differ in the number of

Tau nodes, enforcing the idea Tau is a silent step of computation. This restriction does not rule out

predicates that distinguish between divergent computations, represented as spin, and convergent

computations. To be explicit, this constraint produces the type

{p : (Delay A)→ P | p respects eutt} → P

. This kind of set comprehension can be implemented in Coq as a sigma type. For simplicity, we

apply set operations like element containment and subset directly to these sigma types.

Second, the specifications themselves must be monotonic.
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Definition 9 (Monotonic specification). A set of eutt respecting sets w is considered to be monotonic

if given any to predicates p1 and p2 in A→ P, if p1 ⊆ p2 and p1 is contained in w then p2 is also

contained in w.

This constraint is key in proving that the refinement order is monotonic with respect to bind. Adding

this constraint further complicates the formal type in the following way

{w : {p : (Delay A)→ P | p respects eutt} → P | w is monotonic}

.

Definition 10 (DelaySpec). The DelaySpec type family contains the monotonic sets of eutt

respecting sets.

For the remainder of the discussion of DelaySpec, we will elide these finer details. It suffices to know

that every predicate and specification discussed follows these constraints.

3.3.2. Monad Structure

The following code defines ret and bind in the DelaySpec monad.

ret a := λp.(ret a) ∈ p

bind w k := λp.(λt.(∃a.voidE ⊢ t ≈= ret a ∧ (p ∈ k a)) ∨ ((t ∈ diverges) ∧ t ∈ p)) ∈ w

Both definitions are similar to the definitions provided for IDSpec. The implementation of ret a

contains all predicates that accept computations that terminate with the value a. The implementation

of bind also closely mirrors the implementation for IDSpec. Just like before, the bind w k specification

tests a predicate over Delay B, p, by constructing a new predicate over Delay A and testing its

inclusion in w. This new predicate is the disjunction of two smaller predicates. The left half handles

convergent trees and corresponds closely with the original predicate in the bind definition from

IDSpec. If t converges to a value a, then it tests whether p is contained in the specification k a. The

right half handles diverge trees. If t diverges, we test if p contains the unique divergent tree spin.
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This can be thought of as a safe cast of t from Delay A to Delay B. This is allowed because divergent

computations have no return value, and thus the return type does not constrain their behavior.

When given this monad structure, taking set equality as the equivalence relation, DelaySpec satisfies

the monad laws.

3.3.3. Specification Order

The order that gives the DelaySpec monad the full structure of a specification monad is as follows.

DelaySpec ⊢ w1 ≤ w2 := w2 ⊆ w1

The direction of the inequality makes sense for the same reason the direction in the IDSpec order

makes sense, as explained in Section 3.2. This refinement order satisfies the monotonicity constraint

for specification monads.

3.3.4. Effect Observation

Finally, in order to connect our notions of computation and specification, we need an effect observation

from computations to specifications. The effect observation takes a tree to the set of predicates that

accept it, exactly as the IDSpec effect observation does.

ΘD t := λp.t ∈ p

3.3.5. Lifting to More Effects

Following the work of Maillard, et. al. [2019], we can take this base specification monad and

apply monad transformers to yield specification monads over more expressive computation types.

The monad structure, order, and all effect observations can be lifted automatically to yield more

expressive specification types. For instance, by applying the state transformation with state type S

to DelaySpec, we obtain the type

StateDelaySpec A := (Delay (S ×A)→ P)→ (S → P).
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This is the type of functions from postconditions, predicates over possibly divergent computations

that produce an output state and a return value, to preconditions, predicates over input states. The

automatically generated effect observation is exactly the weakest precondition function over stateful

computations.

ΘSD m := λp s.((m s) ∈ p)

3.4. Hoare Logic Extension

Now we will turn our attention specifically to proving specifications on stateful, possibly diverging pro-

grams. As discussed at the end of Section 3.3, we can construct the StateDelay and StateDelaySpec

monads by applying the state transformation to our base Delay and DelaySpec monads. We also

get the stateful weakest precondition observation, ΘSD, for free from our approach. This provides

all the necessary tools to state the proposition ΘSD ⊢ m ∈ w, which states that a stateful, possibly

divergent computation, m of type StateDelay A, satisfies a specification, w of type StateDelaySpec

A.

3.4.1. Embedding Pre and Post Conditions

So far in this chapter, we have focused on the backwards predicate transformer category of specifica-

tions. However, these specifications don’t directly give us the tools to write intuitive specifications.

For example, we often want to write specifications in terms of pre- and post-conditions. As shown

by Maillard et al. (2019), the backwards predicate transformers are expressive enough to encode such

specifications. The following encoding function maps pre- and post-condition style specifications

over stateful, possibly divergent computations to the StateDelaySpec monad.

encode : (S → P)→ (Delay(S ×A)→ P)→ StateDelaySpec A

encode pi po := λ s p. (s ∈ pi ∧ po ⊆ p)

The encode function takes in a precondition over input states, pi, and a postcondition over possibly

divergent computations that return a pair of an output state and value, po. It produces a predicate
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over states, of type S, and output predicates, of type Delay(S ×A)→ P. This predicates accepts all

states, s, that are contained in the precondition, pi, and output predicates, p, that are supersets of

the postcondition, po.

The connection between this encode function and pre- post-condition style specifications becomes

clear when placed in context with the unfolded Dijkstra monad definitions. Suppose we want to

prove ΘSD ⊢ m ∈ (encode pi po). The following sequence of propositions are all justified either by

unfolding definitions or simply reasoning about sets and propositional logic.

ΘSD ⊢ m ∈ (encode pi po) (3.1)

StateDelaySpec ⊢ (ΘSD m) ≤ (encode pi po) (3.2)

StateDelaySpec ⊢ (λ s p.((m s) ∈ p)) ≤ (λ s p. s ∈ pi ∧ po ⊆ p) (3.3)

∀s p, (s ∈ pi ∧ po ⊆ p)→ (m s ∈ p) (3.4)

∀s, s ∈ pi → (m s) ∈ po (3.5)

The StateDelaySpec monad is also expressive enough to encode specifications that enforce the

conjunction of a list of pre- and post-condition style specifications. For each pair of pre- and

post-conditions in the list, the following specification enforces that if the precondition holds on the

input, then the postcondition holds on the output.

encode_list : ((S → P)× (Delay (S ×A)→ P))∗ → StateDelaySpec A

encode_list conds := λ s p. (∀ pi po, (pi, po) ∈ conds→ s ∈ pi ∧ po ⊆ p)

3.4.2. Recovering Hoare Logic

Section 2.8 presents an ITrees semantics for the IMP language. The StateDelaySpec monad can

express Hoare logic specifications and all the standard Hoare logic inference rules, presented in

Figure 3.1, are valid in this encoding.
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{P}skip{P}
{P}c1{Q} {Q}c2{R}

{P}c1; ; ; c2{Q}
{P ∧ b}c1{Q} {P ∧ ¬b}c2{Q}
{P}if (b) then {c1} else {c2}{Q}

{P [x 7→ a]}x::=a{P}
{P ∧ b}c{P}

{P}while b do c done{P ∧ ¬b}

Figure 3.1: (Standard) Hoare-logic rules.

Definition 11 (Hoare logic encoding). Given a command, c, and two predicates over states, P and

Q, the Hoare logic triple, {P}c{Q}, holds if

StateDelaySpec ⊢ interp_imp JcK ∈ encode P (λt. ∀ s, voidE ⊢ t ≈= ret (s, ())→ s ∈ Q). That

is, if the denotation of c is contained in the specification defined by the precondition P and the

postcondition that asserts that any output state s is contained in Q.

Note that the postcondition in the previous definition accepts any divergent ITrees which corresponds

to the fact that Hoare logic specifications are partial correctness specifications.

3.4.3. Generalized Correctness

Classic Hoare logic deals only with partial correctness properties, which guarantee that if a program

terminates, then its output satisfies a postcondition (Hoare, 1969). Later work built on Hoare logic

dealt with total correctness properties, which guarantees that a program must terminate and that its

output satisfies a postcondition (Jung et al., 2015; Appel, 2011). This chapter provides specifications

that can reason more flexibly about termination and divergence. Some programs, like operating

systems and servers, are not supposed to terminate unless a shutdown command is given. Other

programs might be expected to diverge under certain error conditions. For instance, a programmer

may want to verify that a simple numerical program loops forever when the precondition is violated

in a specific way. Understanding specific error behavior can be useful. The DelaySpec monad,

StateDelaySpec monad, and other specification monads that come from the base DelaySpec monad

are all rich enough enough to express convergence and divergence as predicates, subsuming both

partial and total correctness.
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Consider the example program introduced in the introduction.

Definition nat_sqrt : com :=
x := 0;
while ∼(x * x = y) do {

x := x + 1;
}.

This program is intended to compute the integer square root of the value at variable y when it is a

perfect square and diverge when it is not a perfect square. We can formalize this specification with

two pairs of pre- and post-conditions. The final postcondition in this list relies on the encode_list

function defined in Section 3.4.1.

pre1 := λs. is_square (get y s)

post1 := λt. ∃s. voidE ⊢ t ≈= ret (s, ()) ∧ get x s× get x s = get y s

pre2 := λs. ¬(is_square (get y s))

nat_sqrt_spec := encode_list [(pre1, post1); (pre2, diverges)]

3.5. Interaction Tree Traces

As discussed in Section 3.1, not all programming languages can be easily modelled by a sequence

of monad transformers applied to the Delay monad. For example, a language with IO would be

represented by ITrees with uninterpreted events, not with the Delay monad. This motivates us to go

beyond transformations of DelaySpec and develop a Dijkstra monad for itree E for any arbitrary

event type family E.

3.5.1. First Attempt at Specification Monad

The natural first choice for a specification monad for arbitrary ITrees would be a straightforward

generalization of the DelaySpec monad. However, this does not work. Consider the following flawed
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monadic structure.

ITreeSpec A := (itree E A→ P)→ P

retits a : ITreeSpec A := λp. ret a ∈ p

bindits w g : ITreeSpec A := λp. (λt.(∃a. t ∈ converges a ∧ p ∈ (g a))∨

(t ∈ diverges ∧ (div_cast t) ∈ p)) ∈ w

This specification monad is the type family of backwards predicate transformers for ITrees, just like

DelaySpec is the type family of backwards predicate transformers for the Delay monad. The ret a

definition is identical to the definition for DelaySpec. It is the set of all predicates that contain the

ITree ret a.

Once again the bind definition is more complicated. It relies on the converges predicate, which

asserts that a value a is contained in some leaf of the tree t. This serves as a generalization of testing

that a tree is equivalent to ret a in the Delay monad, as is done in the left disjunct of the bind

specification in DelaySpec. It also relies on the div_cast function. The div_cast function acts as a

kind of safe type-cast for a divergent ITree from itree E A to itree E B. A divergent ITree of type

itree E A has no return values, only visible event nodes and silent steps of computation. This means

it has the same observable behavior as another ITree of type itree E A. The div_cast function

transforms it into this other, computationally identical, ITree. This serves as a generalization of

replacing divergent elements of the Delay monad with a properly typed spin, the only divergent

element of the Delay monad. Otherwise, the bind w g definition is the same as it was for DelaySpec.

It builds a set of predicates, p, by testing if a new predicate over ITrees is contained in w. This new

predicate contains an ITree t, if either t can converge to a value a and the resulting specification g a

contains p, or if t diverges and p contains a computationally identical tree div_cast t.

However, this definition does not satisfy the monad laws. The following predicate and specification
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provide a counterexample.

pc : itree E unit→ P := λt.E ⊢ t ≈= Vis e (λx.ret ())

wc : ITreeSpec unit := λp. ((Vis e (λx.ret ())) ∈ p)

We can prove that pc ∈ wc and that pc ̸∈ bindits wc retits. According to the monad laws,

bindits wc retits should be equivalent to wc. Intuitively, the problem is that in designing both our

ret and bind functions, we need to choose between distinguishing trees based on their return values

and distinguishing them based on the eutt relation. Neither choice gives us the expressiveness we

need to have a useful specification monad.

3.5.2. Interaction Traces

To develop a Dijkstra monad for ITrees with uninterpreted events, we first develop a trace model

for ITrees. These traces are referred to as ITraces. Intuitively, ITraces represent a single linear

path through an ITree. This path consists of a potentially infinite sequence of visible events, paired

with answers from the environment. These answers correspond to the particular branch from the

node that is taken to create this particular path. We implement ITraces as ITrees with a specially

designed event type family EvAns.
Inductive EvAns (E : Type → Type) : Type → Type :=
| evans : ∀(A : Type) (e : E A) (ans : A), EvAns E unit
| evempty : ∀(A : Type) (e : E A) (Hempty : A → void), EvAns E void.

The EvAns type family takes in a base event type family E and has two constructors. The evans

constructor packages a visible event, e : E A, with a potential answer, ans : A. The answer

type of this EvAns event is unit. This means that there is only one branch following this visible

event node. An evans event is only possibly to create when the original event’s answer type is

inhabited. The evempty constructor signifies the end of an ITrace that corresponds to an event with

an uninhabited answer type. The evempty constructor takes in an event, e : E A, and a function

from A to the empty type void, which serves as a proof that A is empty.

Definition 12 (Interaction Trace). An Interaction Trace (ITrace) of type itrace E A is an ITree of
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[tracerefpre]
e : E A a : A

(e, evans e a) ∈ EvRefPre E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[tracerefpost1]
e : E A Hempty : A -> void

(e, evempty e Hempty) ∈ EvRefPre E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[tracerefpost2]
e : E A a : A

(e, evans e a, a, ()) ∈ EvRefPost E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.2: Event refinement definition

type itree (EvAns E) A.

Implementing ITraces in terms of ITrees gives us monadic structure and equational theory for free.

These features are relevant to working with ITraces. Notably, appending traces is simple to define in

terms of bind.

Definition 13 (ITrace append). Given two ITraces, tr1 and tr2, tr2 appended on to tr1, written as

tr1 ++ tr2, is defined as bind tr1 (λx.tr2).

Reusing bind to define trace appending makes it easy to prove key properties about it.

ITraces are a useful intermediate abstraction because they provide expressiveness between the Delay

monad and arbitrary ITrees. They can encode events and therefore interactions with the environment;

however, unlike ITrees, they are still deterministic—an ITrace consists of a linear sequence of events

that converges to at most one return value.

3.5.3. ITrace Refinement

This section presents a trace refinement relation expressing when an ITrace is contained in the

behavior of an ITree. We build the trace refinement relation using rutt, defined in Figure 2.11, along

with specialized event pre- and post-relations defined in Figure 3.2.

Definition 14 (ITrace refinement). An ITrace, tr : itrace E R, refines an ITree, t : itree E R, if
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the following proposition holds: EvRefPre; EvRefPost ⊢ tr ≈= t. If tr refines t we write E ⊢ tr ≲ t.

For inhabited types, EvRefPre pairs events e : E A with event answers evans e a for any possible

answer a. For uninhabited types, EvRefPre pairs events e : E A with evidence that A is empty.

EvRefPost enforces that the only continuations that can be paired with events e and evans e a are

tt and a.

For example, consider the ITree Vis Get (λx.ret x). Suppose we want to prove that it is refined

by the ITrace Vis (evans Get 0) (λx.ret 0). When comparing the events, EvRefPre checks that

the Get event in the tree matches the evans Get 0 event in the trace. Because of EvRefPost, the

refinement relation then feeds the 0 answer to the event into the continuation for the tree and

enforces stateE ⊢ ret 0 ≲ ret 0. This does hold according to the rules of rutt. This notion of

traces and trace refinement yields a new notion of ITree equivalence.

Definition 15 (Trace equivalence). Two ITrees, t1 and t2, are trace equivalent if they are refined by

the same set of ITraces.

This notion of trace equivalence is actually equivalent to the eutt eq relation.

Theorem 2. Two ITrees are equivalent if and only if they are trace equivalent.

Knowing that these relations are equivalent ensures that this trace model of ITrees captures all

essential information about ITrees.

We provided verified reasoning principles relating ITraces and ITrees through this refinement relation.

For example, the following theorem allows us to take an ITrace that refines a bind ITree, and

decompose it into two parts, one which refines the head, and one which refines the continuation.

Theorem 3 (Refinement inversion for bind). Given an ITree, t, a continuation f , and an ITrace, tr,

such that E ⊢ tr ≲ bind t f , tr can be decomposed into another ITrace, tr′, and a trace continuation,

g, such that E ⊢ tr′ ≲ t, and ∀a, E ⊢ g a ≲ f a, and E ⊢ tr ≈= bind tr′ g.
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3.6. ITree Trace Specifications

This section presents a specification monad for ITrees based on the previously introduced ITraces

and the inductive IO specification monad presented in Maillard et al. (2019). We begin by creating

a straightforward adaptation of the inductive IO specification monad for reasoning about ITrees that

terminate. This specification monad will be based on ITraces and will serve to introduce key ideas

that underly the specification monad for all ITrees.

Once again, the specification monad is going to be a collection of backwards predicate transformers.

These specification monads reason about ITrees in terms of paths through the tree structure. The

preconditions reason about the path taken through the ITree so far. And the postconditions reason

about the total path taken through the ITree. These paths, which also serve as a log of interactions

with the environment, can be expressed as ITraces.

Definition 16 (Event logs). Given an event type family E, the type of event logs over E, log E

contains the convergent elements of itrace E unit.

Using these event logs, we can formalize a specification monad for terminating ITrees.

TraceSpecInd A := (log E×A→ P)→ log E→ P

rettsi a := λp l. ((l, a) ∈ p)

bindtsi w g := λp l.((λ(l′, a). ((p, l′) ∈ (g a), l) ∈ w))

The specification monad TraceSpecInd is a backwards predicate transformer. The precondition

is a predicate over event logs, representing the previous interactions with the environment. The

postcondition is a predicate over event logs, representing future interactions with the environment, and

output values. Structurally, these backwards predicate transformers are similar to state backwards

predicate transformers where the event logs are the state.

The ret a specification contains postconditions p paired with input logs l such that p contains (l, a).

This maps postconditions, p, to the set of input logs where,if the computation immediately halts
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and returns a it will be accepted in p.

The bind w g closely mirrors the bind specification presented in Section 3.2. It takes in a post-

condition, p, and an input log, l, creates a new postcondition based on g, and tests if this new

postcondition along with the input log is contained in w. This new postcondition takes in an output

log, l′, and a return value, a, and tests if the pair (p, l′) is in the specification g a. This complicated

definition will be justified by the fact that the resulting final Dijkstra monad for ITrees satisfies all

the relevant laws.

To go from TraceSpecInd to a specification monad suitable for reasoning about possibly divergent

ITrees, we need to change the postconditions to reason about potentially infinite sequences of

interactions with the environment. This is accomplished simply by replacing predicates over

log E×A with itrace E A. From there, we need to augment the definitions of ret and bind to

handle potentially infinite ITraces in the postconditions.

TraceSpec A := (itrace E A→ P)→ log E→ P

retts a := λp l. ((l ++ ret a) ∈ p)

bindts w g := λp l.((λtr. ((∃l′ a, E ⊢ tr ≈= l′ ++ ret a ∧ (p, l′) ∈ (g a)

diverges tr ∧ (div_cast tr ∈ p))), l) ∈ w)

The retts a specification contains all postconditions, p, and input logs, l, such that p contains

l ++ ret a. Much like with the TraceSpecInd definition, this maps postconditions, p, to the set of

input logs where,if the computation immediately halts and returns a it will be accepted in p.

The bindts w g specification generalizes the TraceSpecInd definition much like the DelaySpec

definition generalizes the IDSpec definition. It maps postconditions, p, to the set of input logs,

l, such that l paired with a new postcondition computed using g is contained in w. This new

postcondition accepts two kinds of ITraces: convergent ITraces which can be decomposed into an

event log l′ followed by a return value a, where p paired with l′ is contained in the specification g a;
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and divergent traces which have the same visible behavior as traces contained in p.

Theorem 4. TraceSpec is a valid specification monad.

Given the TraceSpec specification monad, all that remains to define a Dijkstra monad is a valid

effect observation. The choice of the effect observation follows from the intuition that the precon-

ditions reason about the interactions with the environment that have already taken place and the

postconditions reason about the total sequence of interactions with the environment.

Θts t := λp l.∀tr. E ⊢ tr ≲ t→ (l ++ tr) ∈ p

The Θts effect observation takes an ITree, t, and a postcondition, p, and maps it to the set of input

logs, l, such that for any trace through t, tr, p contains l ++ tr. The postcondition needs to accept

the full sequence of interactions consisting of the input log followed by any valid trace through t.

Theorem 5. Θts is a valid effect observation from ITrees to the TraceSpec monad. Futhermore,

the computational monad, ITrees, specification monad, TraceSpec, and the effect observation, Θts,

form a valid Dijkstra monad.

3.7. Trace Specification Examples

This section presents two examples of using trace specifications for programs with interactions with

their environments.

3.7.1. Example with IO

We first demonstrate how to use the TraceSpec monad on a simple example. Recall the nondeterminism

example presented in Section 3.1, which is presented here as an ITree.

queryUntilFalse : itree NonDet unit :=

iter (λ x. bind (trigger Decide ))

(λ b. if b then ret (inl ()) else ret (inr ())) ().

This computation executes a loop in which a nondeterministic choice determines whether the loop
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will perform another iteration or will terminate. As discussed in Chapter 2, the inl values represent

continuation signals for iter loops, and the inr values represent halting signals. The set of traces

that refine this computation contains convergent traces which have a finite sequence of Decide

events answered with true terminated by a Decide event answered with false, and divergent traces

with an infinite sequence of Decide events answered with true. This behavior can be encoded in

TraceSpec with little overhead.

3.7.2. Predicates over ITraces

ITraces can be viewed as a kind of potentially infinite stream and benefit from many predicates

typically used to reason about streams. For example, we can define a predicate that enforces some

constraint on all elements of an ITrace.

Definition 17 (Trace forall predicate). Given a predicate over events, pE of type ∀A. E A→ A→ P,

and a predicate over return values, pR, the trace forall predicate, written as traceForall pE pR

contains precisely the ITraces whose events and recorded answers each satisfy pE and whose return

value, if they converge, satisfies pR.

To encode the behavior of the convergent traces, we also need a slightly different specification which

relies on two predicates over events, one for the final event in the trace and one for every prior event.

Definition 18 (Trace all but final event predicate). Given two predicates over events, pE and pEF

of type ∀A. E A → A → P, and a predicate over return values, pR, the trace all but final event

predicate, written as allButFinal pE pEF pR, contains precisely the converge ITraces where all

but the final event and recorded answer in the trace satisfy pE, the final event and recorded answer

satisfies pEF , and the return value satisfies pR.

3.7.3. Encoding Simple Specifications

As previously discussed, backwards predicate transformers are very expressive but don’t have the

structure we typically associate with specifications. So it is useful to write an encoding function

from pre- and post-condition style specifications to TraceSpec.
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queryUntilFalse_pre : log NonDet → P := λ l. l = nil
queryUntilFalse_post_trace : itrace NonDet unit → P :=
allButFinal (λ e. e = evans Decide true)

(λ e. e = evans Decide false) ⊤
queryUntilFalse_post : itrace NonDet unit → P :=
λ tr.

(tr ∈ diverges →
tr ∈ traceForall (λ e. e = evans Decide true) ⊤) ∧
(tr ∈ converges () →

tr ∈ queryUntilFalse_post_trace)

Figure 3.3: Predicates used to define queryUntilFalse specification

encode_ts : (log E→ P)→ (itrace E A→ P)→ TraceSpec A

encode_ts pi po := λp l. l ∈ pi ∧ (∀tr.(l ++ tr) ∈ po → (l ++ tr) ∈ p)

With these tools in place, we can define the specification of our example. This specification relies on

predicates defined in Figure 3.3. The properties we want to verify about the traces only actually

hold on the whole trace when given specific initial logs. For this specification, we choose to enforce

that the initial log is empty. Then we can constrain the rest of the behavior in the postcondition,

forcing convergent traces to have a sequence of true decisions terminating with a single false and

forcing divergent traces to only have true decisions.

queryUntilFalse_spec : TraceSpec NonDet unit :=

encode_ts queryUntilFalse_pre queryUntilFalse_post

The proof that this program satisfies its specification is straightforward. For the divergent case, it

proceeds by simple coinduction. For the convergent case, it proceeds by induction on the evidence of

convergence.

3.7.4. Example with IO and State

Just like with DelaySpec, we can use the state monad transformer to create a specification monad for

the state transform of the ITree monad, stateful computations which return ITrees. This specification
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monad is sufficient for specifying programs with IO and state events.

Consider a program that begins by prompting the user to provide a natural number n, and then

enters an infinite loop to print all of the multiples of n starting with 0. Let us assume we have an

IMP-like programming language with added Input and Output constructs (on the left below). Let us

also assume we have corresponding events to represent this program as an ITree (on the right). We

omit the definition of these events types.

x := Input;
while true do {
Output x;
y := x + y

}

a � Input; Store x a;
iter (fun _ ⇒
b � Load y; Output y;
a � Load x; Store y (x + y))
()

We can once again develop an encoding of pre- and post-conditions for this monad, and encode

the pairs as elements of the specification monad. Both the pre- and postcondition types and the

encoding function are nearly identical to the ones introduced earlier. The post condition we want

to prove that this program satisfies is that the final trace gets an Input event that evaluates to

some number n, and then has a stream of Output events that print the multiples of n in order. It is

straightforward to define this trace coinductively.

mults_of_n_from_m : N → N → itrace IO unit :=

cofix f n m. Vis (evans (Output m) tt) (λ x. f n (n + m))

mults_of_n : N → itrace IO unit := λ b. mults_of_n_from_m n 0

From there it is straightforward to define the pre- and postconditions.

pre_mult := λ l s. l = nil ∧ get y s = 0

post_mult := λ tr. ∃ n k. IO ⊢ Vis (evans Input n) k ≈= mults_of_n n

With all of this in place, we automatically generate a verification condition and prove the specification

holds using coinduction.
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CHAPTER 4

Semantics For Noninterference Using Interaction Trees

This chapter was previously published as Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch,

and Steve Zdancewic. Semantics for Noninterference with Interaction Trees. In Karim Ali and Guido

Salvaneschi, editors, 37th European Conference on Object-Oriented Programming (ECOOP 2023),

volume 263 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–29:29, Dagstuhl,

Germany, 2023b. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-281-5. doi:

10.4230/LIPIcs.ECOOP.2023.29. URL https://drops.dagstuhl.de/opus/volltexte/2023/18222. I was

the primary author and did most of the research.

4.1. Introduction

Information-flow properties state that programs respect the information-security policies of their

inputs . For instance, noninterference—the most basic information-flow property—states that

secret data cannot influence publicly observable behavior. There are many languages designed to

enforce information-flow properties, guaranteeing that programs treat their sensitive inputs correctly

(Pottier and Simonet, 2003; Hritcu et al., 2013; Magrino et al., 2016; Polikarpova et al., 2020).

Information-flow properties state that programs respect the information-security policies of their

inputs . For instance, noninterference—the most basic information-flow property—states that

secret data cannot influence publicly observable behavior. There are many languages designed to

enforce information-flow properties, guaranteeing that programs treat their sensitive inputs correctly

(e.g., Pottier and Simonet, 2003; Magrino et al., 2016; Polikarpova et al., 2020). The importance

of information-security properties has increasingly led to verification efforts for such languages

and systems (Jia and Zdancewic, 2009; Azevedo de Amorim et al., 2014). These efforts, however,

are mostly limited to source-level guarantees for a single language. For security guarantees to be

meaningful, the entire language toolchain must support them.

Verifying a toolchain requires more than just certifying the guarantees for a single language design.
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Language toolchains must reason about multiple interacting languages. At the source level, programs

are often written in diverse languages that interact by embedding one language inside another. For

instance, C programs often include embedded assembly code. Toolchains also include compilers that

transform code, again requiring cross-language reasoning.

The complexity of multi-language settings makes the already-fraught choice of language represen-

tation even more complicated. For instance, much prior work either uses operational semantics

defined as relations on syntax or uses trace models defined as predicates over lists or streams of

observations (Plotkin, 1981; Leroy, 2009; Jung et al., 2015). Such definitions often require auxiliary

constructs, like program counters or evaluation contexts, that make proofs brittle and hard to com-

pose. Unfortunately, these constructs often require different representations in different languages,

seriously complicating the task of reasoning about cross-language security.

Interaction Trees (ITrees) (Xia et al., 2020; Zakowski et al., 2021b) provide an alternative: a runnable

denotational semantics for effectful, potentially-nonterminating programs, with a library implemented

in Coq. ITrees can express the semantics of diverse programming language features, and thus many

different languages. This versatility makes ITrees well-suited to cross-language reasoning (Xia et al.,

2020) and reasoning about real-world toolchains (Zakowski et al., 2021b; Koh et al., 2019).

Prior works with ITrees reason about program semantics primarily through a notion of equivalence

based on weak bisimilarity, which considers programs equivalent so long as they differ only by a

finite number of silent steps. Information-flow properties, however, require more nuanced reasoning

principles because some program behaviors are visible to an attacker while others are not. In this

chapter we introduce indistinguishability relations for ITrees to capture these intuitions. By defining

these indistinguishability relations on ITrees—that is, on a common semantic domain rather than on

syntax—we greatly simplify cross-language reasoning.

Since indistinguishability relations model the observations of an adversary, they must accurately

reflect an attacker model. That is, they must capture our intuitions about what an adversary can

and cannot see. ITrees allow us to define indistinguishability relations parametrically over a large
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class of event signatures, giving proof engineers the ability to specify many attacker models. However,

ITrees treat one common observation specially: termination. We thus define two indistinguisha-

bility relations, corresponding to two common classes of attacker models: progress-sensitive and

progress-insensitive (Volpano et al., 1996; Volpano and Smith, 1997; Sabelfeld and Myers, 2003).

The progress-sensitive relation represents attackers who can distinguish a program that silently

diverges from both a program that eventually emits more events and one that terminates. The result

is a very strong security guarantee. Unfortunately, enforcing it usually leads to languages which

cannot express many common programming tasks. For instance, most type systems for enforcing

progress-sensitive noninterference disallow loops that depend on secret data. The progress-insensitive

relation, which represents an attacker who cannot determine if a program will make progress in the

future, is less demanding, but provides considerably less security (Askarov et al., 2008).

We add both the indistinguishability relations and a variety of metatheoretic results to the ITrees li-

brary. Constructing the relations and proving the metatheorems requires careful treatment of the

interplay between nontermination and the interactions of a program with its environment, involving

delicate mixed inductive-coinductive reasoning. However, the design of the metatheorems allows a

proof engineer to avoid manual use of coinduction entirely. Moreover, the results further connect

indistinguishability to the standard ITrees notion of bisimilarity, providing compatibility with existing

results.

To validate our design, we verify a simple toolchain for cross-language noninterference. We use

a simple imperative source language, Imp, and a simple assembly language, Asm. Imp includes

exceptions and embedded Asm blocks in addition to standard features. We include exceptions

primarily to show how our indistinguishability semantics works with effects that may alter control

flow, which is particularly tricky for information-flow reasoning. However, this also requires us to

extend the ITrees library orthogonally to our extensions for reasoning about security.

Our toolchain includes two different type systems for Imp and a complier from Imp to Asm.

One type system guarantees progress-sensitive noninterference, and the other progress-insensitive

noninterference. In addition to standard information flow typing rules, the type systems allow
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for semantic typing : any semantically secure program can be considered well typed. This added

flexibility allows programs with embedded assembly to type check without giving a type system

to Asm, and it demonstrates the powerful semantic composition of our security reasoning. We

further verify that our Imp-to-Asm compiler preserves both kinds of noninterference. Note that this

preservation does not rely on the type system, but only on semantic security. Indeed, this is required

in order to allow for security preservation with semantic typing.

Section 4.2 reviews background on information-flow control, the Imp language, and its semantics

defined with ITrees. The contributions of this chapter are as follows.

• Section 4.3 extends the ITrees library with exceptions and exception handlers.

• Section 4.4 adapts ITrees metatheory to reason about security guarantees, defining progress-

sensitive and progress-insensitive notions of indistinguishability and using them to provide

definitions of noninterference.

• Section 4.5 uses ITrees and our new relations to prove the correctness of two standard

information-flow type systems for Imp, one progress-sensitive and one progress-insensitive.

Both systems additionally allow a “semantic typing” (Gregersen et al., 2021) escape hatch for

programs that satisfy the semantic security conditions but do not syntactically type check.

• Section 4.6 adapts Xia et al.’s [102] simple compiler from Imp to (simplified) assembly language

to include the exceptions and print effects in our variant of Imp. We then show that compiler

correctness, as defined by Xia et al., immediately implies security preservation using only the

metatheory of indistinguishability.

All definitions and theorems described in this chapter have been formalized in Coq.

4.2. Background

This section reviews background on information-flow control, interaction trees, and Imp.
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4.2.1. Information-Flow Control

We represent information-security policies using a set of information-flow labels L that must form a

preorder. That is, there is a reflexive, transitive relation ⊑ (pronounced “flows to”) on labels where

ℓ ⊑ ℓ′ means that any adversary who can see information with label ℓ′ can also see information with

label ℓ. We also identify adversaries with labels. An adversary at label ℓ can only see information

with labels that flow to ℓ. Information-flow systems use a variety of orderings, including simply

“public” and “secret,” subsets of permissions (Zeldovich et al., 2011), lattices over principals making

up a system (Myers and Liskov, 1998; Arden et al., 2015; Stefan et al., 2011), and orderings based

on logical implication (Polikarpova et al., 2020).

The classic information-flow security policy is noninterference: if an adversary cannot distinguish a

program’s inputs, they should not be able to distinguish its outputs or its interactions with the envi-

ronment. Because information-flow labels determine which data an adversary can observe, a semantic

version of noninterference requires a semantic model of information-flow labels. Sabelfeld and Sands

(2001) suggest modeling labels as partial equivalence relations (PERs) on terms. PERs are relations

that are symmetric and transitive, but not necessarily reflexive. PERs act like equivalence relations

on a subset of their domain. For information-flow security, such PERs are called “indistinguishability

relations.”

This model further asserts that indistinguishable programs take indistinguishable inputs to indistin-

guishable outputs. That is, related programs, applied to related inputs, produce related computations.

This closure property allows a semantic version of noninterference to be defined as self-relation of

a program. A program is related to itself—and noninterfering—if and only if, for every adversary,

given any two inputs an adversary cannot distinguish, it produces two computations that adversary

cannot distinguish.

As we will see in Section 4.4, indistinguishability gives a natural way to reason about noninterference

using ITrees. Requiring every indistinguishability relation to be a PER, however, corresponds to

strong assumptions about the adversary. In particular, it requires that the adversary be able to
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Expressions e ::= x | n | e+ e | e− e | e ∗ e
Commands c ::= skip | x := e | c1 ; c2 | while (e) do {c}

| if (e) then {c1} else {c2} | print(ℓ, e) | inline {a}
Inlined Assembly a ::= (see Section 4.6)

Figure 4.1: Imp syntax, where x is a variable, n is a number, and ℓ is an information-flow label.

distinguish a program that silently diverges from a program that takes arbitrarily long to produce

an observable interaction with its environment. Noninterference against this strong adversary is

known as progress-sensitive noninterference. While this strength provides more security, enforcing

progress-sensitive noninterference results in a prohibitively expensive programming model (Sec-

tion 4.5.1, Sabelfeld and Myers, 2003; Volpano and Smith, 1997). To allow for enforcement of

progress-insensitive noninterference, the indistinguishability model is often relaxed to not require

transitivity (Vassena et al., 2019; Rajani and Garg, 2018; Gregersen et al., 2021). This relaxation

makes reasoning about noninterference in programs with loops easier.

4.2.2. Semantics for Imp with Security Labels

To explore how ITrees can help us verify noninterference properties, we will use a simple imper-

ative language, Imp, as a running example and case study. Conveniently, previous work on both

ITrees (Xia et al., 2020) and noninterference (Sabelfeld and Myers, 2003) use Imp as case studies,

ensuring that the connection we make corresponds with existing tools and techniques in both domains.

Our version of Imp, presented in Figure 4.1, includes features not present in the works cited above:

the ability to print expressions to one of several output streams, and the ability to inline code from

a simple assembly language. Section 4.3 will further extend Imp to allow throwing and catching

exceptions. The output streams are indexed by information-flow labels, and we think of stream ℓ as

being visible to any adversary at or above ℓ, but no others. Thus, printing secret information to a

public stream leaks data.

The assembly language, Asm, is a simplification of standard assembly language. We allow an infinite

number of registers, and we assume that the heap is addressed by variables, as in Imp. We do

not allow dynamic jumps, only jumps to fixed addresses. Beyond those simplifications, we include
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features similar to those in Imp: we allow printing to streams indexed by information-flow labels

and, as we show later, the Asm semantics can model uncaught exceptions, both features necessary

for correct compilation of Imp code. We discuss the syntax and semantics of Asm in more detail in

Section 4.6.

As in languages like C, embedding Asm in Imp allows developers more control over the performance

of their code. For instance, the simple compiler in Section 4.6 would compile the Imp program

y := x+ 1 ; z := x+ 2 to an Asm program that loads data from x into a register twice, once for each

assignment. Since Loads are relatively expensive, when the Imp code above appears in a critical

loop a developer might replace it with the following Asm code:

Start : load $0 ← x

add $0 ← $0, 1

store y ← $0

add $0 ← $0, 1

store z ← $0

jmp Exit

This program starts from the Start label, and terminates the program by jumping to the Exit

label. Unlike our compiler’s output, this custom Asm only has one load instruction.

Giving semantics to Imp using ITrees requires defining events representing possible interactions

between an Imp program and its environment. Imp has three types of events: stateE for representing

interactions with the heap state, regE for representing interactions with the register state, and

printE for representing output. There are two constructors for stateE events, one for reading and

one for writing.

get : var→ stateE(N) set : var→ N→ stateE(unit)
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JeKe : itree progE N

JxKe = trigger get(x)

JnKe = ret n

Je1+e2Ke = x← Je1Ke ;
y ← Je2Ke ;
ret (x+ y)

JcKc : itree progE unit

JskipKc = ret ()

Jx := eKc = n← JeKe ; trigger set(x, n)

Jprint(ℓ, e)Kc = n← JeKe ; trigger print(ℓ, n)

Jc1 ; c2Kc = Jc1Kc ; Jc2Kcu

v
if e
then {c1}
else {c2}

}

~

c

= n← JeKe ;
if n ̸= 0
then Jc1Kc
else Jc2Kc

Jwhile (e) do {c}Kc = iter


λ_. n← JeKe ;

if n ̸= 0
then (JcKc ; ret inl())
else ret inr()

 ()

Jinline {a}Kc = JaKasm

Figure 4.2: Imp denotational semantics

The regE events require another two constructors, one for reading and one for writing.

getreg : reg → regE(N) setreg : reg → N→ regE(unit)

There is only one constructor for printE events: print : L → N→ printE(unit).

As Imp programs can produce all three types of events, we combine them with disjoint union. The

resulting event type for Imp programs is progE = regE⊕stateE⊕printE. For notational simplicity,

we elide the injection operator when using these compound events.

Figure 4.2 presents the denotation of Imp using these events. Note that there are two denotation

functions: J·Ke for expression and J·Kc for commands. As expressions produce numbers and commands

have no output, J·Ke produces computations of type itree progE N, while J·Kc produces computations

of type itree progE unit. The function J·Kasm gives ITree-based semantics to Asm. Its full definition

can be found in the work of Xia et al. (2020); we discuss the modifications necessary to accommodate

our changes in Section 4.6.

The denotation for expressions is fairly straightforward, and, importantly for proofs, completely
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compositional—an expression’s meaning is constructed from that of its subexpressions. The denota-

tion of a variable is a get event, a literal n becomes ret n, and arithmetic expressions simply denote

each argument and return the resulting value using bind.

Most commands are equally simple and compositional. skip is an immediate ret. Both assignment

and print first denote the argument and then bind the result into the appropriate event. Sequencing

is implemented with bind on a unit value that we elide. Conditionals are denoted by first denoting

the condition, and then return the denotation of either the left or right command depending on the

result.

Loops are more complex and make use of the iter combinator. The combinator expects a function

that returns itree progE (unit ⊕ unit), where a left value indicates “continue” and a right value

indicates that the loop should terminate. The function given to iter first computes the value of the

loop’s guard expression. If the value is not zero, it sequences a single denotation of the loop body

with ret inl(), indicating the loop should continue. Otherwise, if the value is zero, it signals to halt

the iteration with ret inr().

4.2.3. Handlers and Interpretations

As discussed in Chapter 2, the events in an ITree can be thought of as a kind of syntax. Even though

we give them names that suggest certain behaviors, like get and set, nothing about their structure

enforces this behavior. Consider the ITree trigger set(x, 0) ; trigger get(x): while the names

suggest that the result of this get should be 0, it actually produces a tree with one branch for every

natural number. Likewise, the ITree JcKc representing an Imp program c does not fully express the

behavior we would expect from c because it has uninterpreted state events.

The behavior of events is determined by an event handler. For example, consider hprog which uses
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the standard monadic interpretation of state to interpret progE events:

hprog(get(x)) = λ(r, h). ret (r, h, h(x))

hprog(set(x, n)) = λ(r, h). ret (r, h[x 7→ n], ())

hprog(getreg(x)) = λ(r, h). ret (r, h, r(x))

hprog(setreg(x, n)) = λ(r, h). ret (r[x 7→ n], h, ())

hprog(print(ℓ, n)) = λ(r, h). trigger print(ℓ, n) ; ret (r, h, ())

Any event handler can be lifted to a function from ITrees to effectful computations using the interp

function, which traverses an ITree, replacing each event with the effectful computation assigned by

the handler. The full semantics of an Imp program is the interpreted ITree, interp hprog JcKc.

4.2.4. Inlined Asm and Undefined Behavior

Adding support for inlined Asm code introduces a new complication to the semantics of Imp:

undefined behavior. To analyze the correctness and security of a language toolchain, we need to

define the behavior of source-level programs. The semantics defined in Section 4.2.2 and Section 4.2.3

do that for Imp as long as any inlined Asm has well-defined behavior. However, consider the following

Imp program, which contains inlined Asm.

p = c ; inline { Start : brz $0 A1 A2

A1 : load X ← 0

jmp Exit

A2 : load X ← 1

jmp Exit }

The inlined Asm program looks at the value in register 0 and, if it is zero, jumps to address A1;

otherwise it jumps to address A2. Thus, the value of X after executing program p depends on

the value of register $0 after c is executed. However, it is not clear what the register’s value will
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be when this program is compiled and run, since reasonable compilers could use the register $0

in different ways—or not at all—to compile the Imp command c, resulting in different register

states. We thus consider inlining any Asm program that relies on the initial values of registers to be

undefined behavior. We formalize this property in Section 4.5.3. We further take the same approach

as CompCert,4 and only verify the correctness and security of programs that are well-defined.

4.3. Exceptions with Interaction Trees

As mentioned in Section 4.1, we include exceptions in Imp since they are an important example of

an effect which can change the control flow. In this section, we show how to model exceptions with

ITrees by adding throw and catch constructs to Imp as follows:

Commands c ::= · · · | throw(ℓ) | try {c1} catch {c2}

Note that the throw command includes an information flow label, specifying who may see the

exception.

4.3.1. Exceptions as Halting Events

We model exceptions in ITrees as halting events. Recall from Section 2 that events create one branch

for every possible response from the system. If an event has an uninhabited response type, then

that continuation can never be run since the answer type has no values. We call such events halting

because they force the computation to stop. We formalize this with the following lemma:

Lemma 6. Suppose A is an uninhabited type and e is an event of type E A, then given any

continuations k1 and k2 and any return relation R, E ⊢ Vis e k1 ≈R Vis e k2.

The continuation of a halting event cannot be run and has no effect on the computational content of the

ITree. This allows a programmer to assign such an ITree any desired return type without changing

its computational content. This property makes halting events useful for modeling (uncaught)

exceptions: an exception can have any type and causes computation to stop. To represent exceptions

using this strategy, we use an event type excE with only a single constructor exc : Err → excE(∅)
4Personal communication with Xavier Leroy.
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which takes the exception’s label and produces an event with an empty answer type. This allows us

to define Jthrow(ℓ)Kc = trigger exc(ℓ).

4.3.2. Catching Exceptions

Real-world languages do not just throw exceptions, they also handle them. To implement exception

handling in ITrees, we use a common monadic interpretation of exceptions: we allow programs to

return either a standard return value or an exception. Specifically, we move from an ITree of type

itree ( excE Err⊕E) R to one of type itree ( excE Err⊕E) (Err⊕R) using interp to lift the

following hexc event handler to the entire ITree, as described in Section 4.2.3.

hexc : ∀A, (excE Err ⊕ E) A→ itree ( excE Err ⊕ E) (Err ⊕A)

hexc(inl(exc(e))) := ret inl(e)

hexc(inr(e)) := x← trigger inr(e); ret inr(x)

Even though the resulting ITree cannot have exception events, we still assign it a type that allows

them so it can cleanly compose with ITrees that do contain exception events. This choice allows

monadic bind to apply exception handlers—which may themselves contain exception events—to any

left values (exceptions) while leaving right values (normal returns) unmodified. The result is the

following exception-handling combinator, where case k1 k2 chooses the continuation k1 or k2 if the

return value is inl or inr, respectively.

trycatch(t, kc) := interp hexc t≫= case kc ret

This trycatch combinator has a straightforward metatheory. In particular, we show how it interacts

with the constructors of ITrees, allowing proof engineers to reason about trycatch without using

manual coinduction.

63



Theorem 7. The trycatch operator satisfies the following equivalences:

E ⊢ trycatch(ret r, kc) ≈= ret r

E ⊢ trycatch(Tau(t), kc) ≈= trycatch(t, kc)

E ⊢ trycatch(Vis inr(a) k, kc) ≈= Vis inr(a) λx.trycatch(k(x), kc)

E ⊢ trycatch(Vis inl(exc(ε)) k, kc) ≈= kc(ε)

Finally, the trycatch operator provides a simple denotation of Imp’s try-catch blocks:

Jtry {c1} catch {c2}Kc = trycatch(Jc1Kc , λ_. Jc2Kc)

4.4. Indistinguishability of Interaction Trees

To leverage the common semantic domain of ITrees to guarantee the security of a toolchain,

we define our indistinguishability relation purely semantically. Intuitively, for programs to be

indistinguishable, they must return indistinguishable results and have indistinguishable interactions

with their environments.

Since return values can be arbitrary types, we follow eutt by parameterizing indistinguishability over

a return relation R. For indistinguishability, R describes when two values appear to be the same to

the adversary. For example, consider a program that outputs a pair (a, b) where a is visible to Alice

and b is visible to Bob, but not vice versa. The values (1, 1) and (1, 2) are not equal, but they are

indistinguishable from Alice’s perspective, as she can only see the first element. We can represent

Alice’s view of the output with a relation RAlice defined by RAlice((a, b), (a
′, b′)) ⇐⇒ a = a′.

We could simply use eutt with a return relation R modeling indistinguishability. The resulting

relation would model an adversary who can only see some part of the program’s output, but it would

require the two programs to interact with the environment in precisely the same way. Most settings,

however, allow adversaries to see some interactions, but not others. For example, memory may be

partitioned into a protected heap the adversary can never see, and an unprotected heap that it can
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[Ret]
R(r1, r2)

E; ρ ⊢ps ret r1 ≈ℓ
R ret r2

−−−−−−−−−−−−−−−−−−−−−−−−− [TauTau]
E; ρ ⊢ps t1 ≈ℓ

R t2

E; ρ ⊢ps Tau(t1) ≈ℓ
R Tau(t2)

===========================

[PubVis]

∀a,E; ρ ⊢ps k1(a) ≈ℓ
R k2(a)

e : E A ρ(e) ⊑ ℓ

E; ρ ⊢ps Vis e k1 ≈ℓ
R Vis e k2

============================= [TauL]
E; ρ ⊢ps Tau(t1) ≈ℓ

R t2

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−−−

[TauR]
E; ρ ⊢ps t1 ≈ℓ

R Tau(t2)

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−−−

Figure 4.3: Inference rules for indistinguishability, where all events are visible

see at all times. Reasoning about security when some events are visible and others are not requires

changing eutt to account for what the adversary can observe.

4.4.1. Secure Equivalence Up-To Taus

Our indistinguishability relation is called secure equivalence up-to tau or seutt. In addition to a

return relation, seutt is also parameterized by a label ℓ, representing what the adversary can see,

and a sensitivity function ρ that maps events to labels, representing who may observe which events.

Intuitively, two ITrees are related by seutt if the environment interactions appear the same to an

adversary who can see events only at or below label ℓ, and the return values are related by R. We

write the relation as E; ρ ⊢ps t1 ≈ℓ
R t2.

Notably, we base the relation on eutt, which makes it progress sensitive. Recall from Section 4.2.1

that progress-sensitive noninterference allows any adversary to determine if a program silently

diverges, and is often prohibitively expensive to enforce. We will also define pi-seutt, a progress-

insensitive version of seutt, in Section 4.4.3. The judgments take the same form, so we annotate

the turnstile with a subscript ps or pi to distinguish them visually.

For presentation, we separate the rules for seutt into three groups: rules covering returns, Taus, and

public events (Figure 4.3), rules covering secret events that do not halt the program (Figure 4.4),

and rules covering secret halting events (Figure 4.5).

65



[PrivVisTau]

∀a,E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R Tau(t)

================================= [PrivVisIndL]

∀a,E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[PrivVisVis]

∀(a :A)(b :B), E; ρ ⊢ps k1(a) ≈ℓ
R k2(b) e1 : E A e2 : E B

ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ ¬empty(A) ¬empty(B)

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

==============================================================

Figure 4.4: Inference rules for indistinguishability, where events are not visible but answer types are
inhabited

Public Events and Returns. When an adversary is able to see an event, indistinguishability

acts just like weak bisimulation. The rules, found in Figure 4.3, are almost identical to the rules of

eutt, but with the added requirement that any visible event be visible to the adversary. That is, we

require ρ(e) ⊑ ℓ in PubVis.

It might seem mysterious that we require the event to be visible in PubVis. But allowing this rule

to apply no matter the visibility would allow the adversary too much power, since they would know

that the same result is returned on both sides of the equivalence. As we will see, the rule for invisible

events is stricter. We will also see how this strictness, when proving a program p indistinguishable

from itself, corresponds to proving that the behavior of p does not differ in runs in low-equivalent

environments. If we were to allow high events in PubVis, this would allow our proof to only consider

the behavior of p in one environment, breaking our correspondence with information-flow security.

Private Events With Responses. When the adversary is unable to view an event, seutt cannot

act like eutt. In this case, the rules are designed to formalize two intuitions. If the computation

continues after a secret event, we should treat the event like a Tau, since the adversary cannot

observe either. If the event halts the computation, the event should be equivalent to a silently

nonterminating computation.

The rules in Figure 4.4, along with symmetric analogues of PrivVisTau and PrivVisIndL, handle

the case where the event allows computation to continue—that is, the event’s answer type is inhabited.
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The first rule, PrivVisTau, relates a private event Vis e k with a Tau(t). In addition to requiring

the event to be secret (ρ(e) ̸⊑ ℓ) and have a non-empty answer type (¬empty(A)), it also requires

the continuation k produce an ITree indistinguishable from t for every possible response. This

requirement ensures that the adversary’s future observations cannot depend on the response to the

private event. Note that the requirement that A be non-empty does more than just specify when the

rule applies. Without it, a private halting event would trivially satisfy this condition, allowing it to

relate to any ITree with a τ in front. Since the adversary can determine when a program has halted,

they should be able to distinguish, for example, a program that throws a private exception from a

program which, after a Tau, prints to a public channel. This rule ensures that this intuition holds.

PrivVisIndL is analogous to TauL, but for secret events instead of Tau nodes. This rule has the

same premises as PrivVisTau for the same reasons. Moreover, it only removes a node from the

head of one ITree, not both. As with the definition of seutt, TauL, and TauR, we therefore make

PrivVisIndL inductive, not coinductive, to avoid relating a infinite stream of secret events to all

other ITrees.

Finally, PrivVisVis removes a private event from the head of both sides of the relation. As with

the previous rules, we require both events to be private and have non-empty answer types. This time,

we require the continuations of the two events to be indistinguishable for every possible response of

both events separately. This requirement formalizes the idea that the adversary should not be able to

distinguish the program’s behavior on any pair of secret responses.

To see the power of this rule, consider whether an adversary who can see l but not h would find the

following ITrees indistinguishable from themselves:

tsec ≜ x← trigger get(l);

y ← trigger get(h);

trigger set(h, x+ y)

tinsec ≜ x← trigger get(l);

y ← trigger get(h);

trigger set(l, x+ y)

One would hope that tsec would be indistinguishable from itself, while tinsec would not be, and indeed
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[EmpVisTau]

E; ρ ⊢ps Vis e k ≈ℓ
R t

e : E A empty(A)
ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R Tau(t)

========================== [EmpVisVisL]

∀b, E; ρ ⊢ps Vis e1 k1 ≈ℓ
R k2(b)

e1 : E A e2 : E B
empty(A) ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

====================================

Figure 4.5: Inference rules for indistinguishability, where events are halting and not visible

that is the case. To (attempt to) prove that either tree is equivalent to itself, we walk through each

ITree. Since l is visible, so is get(l), so PubVis applies and requires only that each possible value of

x produce an ITree that is indistinguishable from itself. Because h is secret, the adversary should not

be able to observe or infer its value, so we must use PrivVisVis to remove get(h). PrivVisVis

requires that, for all possible pairs of values y1, y2, the continuations be indistinguishable. Thus

in tsec, trigger set(h, x+ y1) must be indistinguishable from trigger set(h, x+ y2). Since h is

secret, so are the set events, so PrivVisVis can remove them even when they differ. After removing

set, the remaining continuation always produces ret (), so Ret finishes the proof.

However, in tinsec, PrivVisVis does not apply to the set events since l is visible. PubVis only

relates ITrees starting with the same event, but set(l, x+ y1) ̸= set(l, x+ y2) when y1 ̸= y2. As a

result, no rule applies after removing get(h), so the adversary can distinguish tinsec from itself. In

other words, tinsec is, indeed, insecure.

Private Halting Events. Finally, we turn to the case where an event the adversary cannot see

halts the computation. In this case, the adversary should be unable to tell that the event took place,

and therefore should not be able to distinguish a program with a secret halt from a program that

never terminates. However, the adversary should still be able to distinguish it from any ITree that

contains an event the adversary can see.

This intuition means that a private halting event should not be treated like a Tau, as a private

non-halting event is, but rather should be indistinguishable from an infinite stream of Taus. We

formalize this approach with the rules presented in Figure 4.5 along with their symmetric analogues.

EmpVisTau peels a single Tau off the right ITree, leaving the private halting event on the left
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unmodified. EmpVisVisL does the same for a private event.

There are two interesting properties about these rules. First, unlike the rules for private events and

Taus that leave one side of the equivalence unmodified, these rules are coinductive, not inductive.

This choice allows us to relate a private halting event to an entire nonterminating program, as

long as that program has no public events. Indeed, no rule allows us to remove a private halting

event, as there would be nothing left to compare. Second, EmpVisVisL has no requirement that B,

the answer type of the not-necessarily-halting event, be non-empty. This choice avoids the need

to explicitly handle the case where both ITrees contain private halts. If B is non-empty, then

EmpVisVisL treats the event as a Tau. If B is empty, then the first premise of the rule is trivially

satisfied, which is desirable, as in that case both ITrees begin with a private halt event and should

be equivalent.

4.4.2. The Metatheory of Indistinguishability

The seutt relation captures intuitions about when two ITrees are indistinguishable to some adversary,

but using it requires a delicate mix of induction and coinduction. To both demonstrate the power

of our definition and better support verification, we also develop a library of metatheory for

indistinguishability. This library supports reasoning about cross-language toolchains without the

need for explicit coinduction, as we will see when we verify the correctness of a security type system

and compiler for Imp (Sections 4.5 and 4.6, respectively).

Indistinguishability as a PER Model. Recall from Section 4.2.1 that Sabelfeld and Sands (2001)

argue for indistinguishability forming a partial equivalence relation (PER). It would be nice if seutt

always formed a PER, but because it is parameterized on an arbitrary relation for return values,

that is not always the case. Instead, we prove generalized versions of transitivity and reflexivity. In

particular, if we let
↔
R denote the reverse relation of R—that is,

↔
R(x, y) △⇐⇒ R(y, x)—then the

following theorems hold.

Theorem 8. For all R, E, ρ, and ℓ, if E; ρ ⊢ps t1 ≈ℓ
R t2, then E; ρ ⊢ps t2 ≈ℓ

↔
R
t1.
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Theorem 9. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E; ρ ⊢ps t2 ≈ℓ
R2

t3 then E; ρ ⊢ps t1 ≈ℓ
R1◦R2

t3.

Note that if R is symmetric, then R =
↔
R, and if R is transitive, then R ◦R ⊆ R. These properties

allow us to prove the following corollary.

Corollary 1. If R is a PER, then so is E; ρ ⊢ps − ≈ℓ
R − for any E, ρ, and ℓ.

ITree Combinators. ITrees are often defined using the combinators from Section 2, making it

important to understand how indistinguishability interacts with those combinators. The definition

of seutt directly describes how to relate simple programs defined using only ret and trigger, but

they say nothing about larger ITrees built using bind and iteration.

Bind allows for the sequential composition of programs. We would like indistinguishable programs t1

and t2 followed by indistinguishable continuations k1 and k2 to compose into larger indistinguishable

programs t1≫= k1 and t2≫= k2. The following theorem says that this result holds whenever the

relation R1, securely relating t1 and t2, puts enough constraints on their possible outputs to ensure

that k1 and k2 are always securely related at some relation R2.

Theorem 10. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and for all values a, b, R1(a, b) implies E; ρ ⊢ps k1(a) ≈ℓ
R2

k2(b),

then E; ρ ⊢ps t1≫= k1 ≈ℓ
R2

t2≫= k2.

Iteration represents loops, which have two parts: an initial value, and a body that produces a value

from the previous value. Indistinguishable initial values paired with indistinguishable bodies produce

indistinguishable loops, as we can see in the following theorem.

Theorem 11. If R1(a1, b1) and, for any a, b, E; ρ ⊢ps k1(a) ≈ℓ
caseR(R1,R2)

k2(b) whenever R1(a, b),

then E; ρ ⊢ps iter k1 a1 ≈ℓ
R2

iter k2 b1.

This rule is conceptually similar to a loop invariant from a Hoare-style logic. R1 is a property that

is initially true and is preserved on each iteration except the final one, while the final iteration

guarantees that R2 holds. The caseR(R1,R2) function lifts two relations to a single relation over

sum types such that R1 is applied to two left values, R2 is applied to two right values, and no other
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combination is related.

Relationship with Equivalence Up-To Taus. Recall that weak bisimulation of ITrees requires

two ITrees to contain the same pattern of interaction with their environment. Our notion of

indistinguishability assumes that adversaries distinguish programs purely based on their interactions

with the environment. One would thus expect that combining eutt with indistinguishability should

result in indistinguishability. The following theorem shows this to be the case.

Theorem 12 (Mixed Transitivity). If both E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we can

conclude that E; ρ ⊢ps t1 ≈ℓ
R1◦R2

t3.

This is a very powerful theorem. In particular, many program transformations preserve equality. That

is, they take source programs with equivalent-up-to-taus ITree representations to target programs

with the same property. Mixed transitivity tells us that compilers built from such transformations

also preserve indistinguishability. For instance, since noninterference—the security property we are

ultimately considering—is defined as a program being indistinguishable from itself, mixed transitivity

supports a very simple proof that the compiler in Section 4.6 preserves noninterference. While this

result might be surprising, it reflects the utility of ITrees and indistinguishability. By looking at

which labels can distinguish an ITree from itself, we can discover where leaks are possible.

4.4.3. Progress-Insensitive Indistinguishability

The type systems that enforce progress-sensitive noninterference are extremely restrictive. Thus,

information-flow control literature mostly studies progress-insensitive type systems. These type

systems enforce noninterference against adversaries who cannot see when a program has begun

to silently loop forever. Intuitively, such adversaries believe that silently looping programs could

break out of their loops at any moment, and so do not distinguish them from programs which have

produced visible events.

In order to support such reasoning, we introduce pi-seutt, a progress-insensitive version of indistin-

guishability for ITrees.
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Definition 19 (pi-seutt). The relation pi-seutt, the progress-insensitive version of indistinguisha-

bility, is defined by modifying the definition of seutt by completely removing the rules for halting

events (all rules in Figure 4.5) and making every other rule coinductive (this modifies TauL and

TauR in Figure 4.3 as well as PrivVisIndL in Figure 4.4 and its symmetric counterpart).

This relation is strictly more permissive than seutt, since it relates every ITree to silently diverging

ITrees and private halts. These facts can be formalized in the following theorems:

Theorem 13. If E; ρ ⊢ps t1 ≈ℓ
R t2 then E; ρ ⊢pi t1 ≈ℓ

R t2.

Theorem 14. Given any ITree t, E; ρ ⊢pi tspin ≈ℓ
R t.

Theorem 15. Given any ITree t, if e is a halting event, then E; ρ ⊢pi Vis e k ≈ℓ
R t.

Just as with the progress-sensitive version of indistinguishability, we can show that indistinguishability

plays well with the usual ITree combinators. This allows us to prove ITrees indistinguishable in

many cases without resorting to hand-rolled coinduction.

Theorem 16. If E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E; ρ ⊢pi k1(a) ≈ℓ
R2

k2(b) whenever R1(a, b), then E; ρ ⊢pi

t1≫= k1 ≈ℓ
R2

t2≫= k2.

Theorem 17. If R1(a1, a2) and for any a, a′, E; ρ ⊢pi k1(a) ≈ℓ
caseR(R1,R2)

k2(a
′) whenever R1(a, a

′),

then E; ρ ⊢pi iter k1 a1 ≈ℓ
R2

iter k2 a2.

Moreover, mixed transitivity again holds, allowing for simple proofs of compiler safety:

Theorem 18 (Mixed Transitivity). If both E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we get

E; ρ ⊢pi t1 ≈ℓ
R1◦R2

t3.

Progress-insensitive indistinguishability behaves differently from the progress-sensitive sibling version

in one important way: it does not form a PER. Because it relates a diverging ITree to every other

ITree, pi-seutt is not transitive. This is not surprising, since progress-insensitive indistinguishability

is not a PER (Vassena et al., 2019; Rajani and Garg, 2018; Gregersen et al., 2021). It does, however,
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retain generalized symmetry, and a weakened but still-useful version of generalized transitivity:

Theorem 19. If E; ρ ⊢pi t1 ≈ℓ
R t2 then E; ρ ⊢pi t2 ≈ℓ

↔
R
t1.

Theorem 20. If E; ρ ⊢pi t1 ≈ℓ
R1

t2, E; ρ ⊢pi t2 ≈ℓ
R2

t3, and t2 converges along all paths, then

E; ρ ⊢pi t1 ≈ℓ
R1◦R2

t3.

An ITree is considered convergent if it is either a ret , a Tau followed by a convergent ITree, or a

non-halting event followed by a continuation that converges for any input.

Unlike progress-sensitive indistinguishability, we can easily show that loops produce no events

that are observable to some adversary at ℓ via pi-seutt. Suppose that we want to show that

iter body a0 emits no events that are observable to some adversary at ℓ. We can do so by showing

that iter body a0 and ret b are indistinguishable with some return relation R. This shows that

the body of the loop both emits no observable events and, if the loop terminates, it returns a value c

where R(c, b). Importantly, we have not made any statement about whether the loop terminates; we

have merely said that it will not produce events, regardless of its termination behavior. We formalize

this in the following theorem:

Theorem 21. For any relation Rinv , if

Rinv (a0, b) and ∀a, Rinv (a, b) =⇒ E; ρ ⊢pi body a ≈ℓ
leftcase(Rinv ,R) ret b,

then E; ρ ⊢pi iter body a0 ≈ℓ
R ret b, where the relation leftcase is defined as follows:

leftcase(R1,R2)(inl(a), b) = R1(a, b) leftcase(R1,R2)(inr(a), b) = R2(a, b)

4.4.4. Noninterference and Interpretation

Recall from Section 4.2.1 that we can define noninterference using an indistinguishability relation on

programs by saying that a program is noninterfering if it is related to itself—given indistinguish-

able inputs, it will produce indistinguishable computations. We could define noninterference on
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ITrees using seutt (or pi-seutt), as they provide such indistinguishability relations by design. This

approach produces a sensible definition, but one that assumes an extremely strong adversary.

Consider the following Imp program, where the his have label ℓh and the lis have label ℓl:

if (h1 = 0) then {h2 := l1} else {h2 := l2}

Since the program writes only to secret variables, intuitively it seems secure. However, according to

seutt, it is not related to itself at ℓl since reading from l1 and l2 produce different get events with

label ℓl. All adversaries have the power to observe reads of public state, not just writes.

The visibility of public read events is not the only problem. Using just seutt also means a

computation cannot publicly depend on the result of reading a secret variable, even if a public value

were written to that variable. For instance, the following program would also be considered insecure:

h := l ; print(ℓl, h)

If h cannot change between assignments, this program is intuitively secure, but seutt at ℓl requires

print(ℓl, h) to produce the same output regardless of the value of h, which it clearly does not.

On uninterpreted ITrees, seutt models a system where both reads and writes are visible to anyone

who can see the variable, and the value of a secret variable may silently change between a read and

a write. This model makes perfect sense in some contexts—like distributed computation (Liu et al.,

2017)—but we usually consider weaker adversaries.

We can remove these assumptions and model a weaker adversary by interpreting state, as we discussed

in Section 4.2.3. Interpreting these programs would result in two meta-level functions (i.e., Coq

functions) which take a state as input and produce an ITree returning an output state. For example

in Section 4.2.3, we define the semantics of an Imp program c as an interpreted ITree—that is, as a

function from states to ITrees—not as a single ITree with state events. We thus adjust our notions

of indistinguishability and noninterference to account for this semantic construct.
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Intuitively, we start with a family of relations RS,ℓ that describes when states are indistinguishable

to an adversary at level ℓ and use it to define the following observational equivalence. For technical

reasons, we require RS,ℓ to be an equivalence relation at all labels. For Imp, we use a relation ∼=ℓ
Γ

which only requires states to agree on a variable x if the label of x flows to ℓ.

Definition 20 (Stateful Indistinguishability). Two stateful computations p1 and p2 are px-statefully

indistinguishable under RS,ℓ and R at label ℓ if, for every pair of states σ1 and σ2 such that

RS,ℓ(σ1, σ2),

E; ρ ⊢px p1 σ1 ≈ℓ
RS,ℓ×R p2 σ2

where RS,ℓ ×R((σ′
1, a1), (σ

′
2, a2))

△⇐⇒ RS,ℓ(σ
′
1, σ

′
2) and R(a1, a2)

As described above, stateful indistinguishability with ∼=ℓ
Γ defines security against an adversary who

can observe public writes, but not secret writes or secret reads. This indistinguishability relation

leads to a much more common definition of noninterference, and it is the one we will use in our case

studies in Sections 4.5 and 4.6.

Definition 21 (Noninterference). A stateful computation is px-noninterfering with state relations

RS,ℓ and return relation R if, given any label ℓ, it is px-statefully indistinguishable from itself under

state relation family RS,ℓ and return relation R.

4.5. Security Sensitive Type Systems For Imp

To see how to use this theory of indistinguishability and ITrees, we now provide an information-security

guarantee for an example toolchain for Imp. We begin by verifying two information-flow type systems,

and proceed with a simple compiler in Section 4.6. The two notions of noninterference—progress

sensitive and progress insensitive—require slightly different type systems, so we use our ITrees-based

semantics to formally verify that both enforce their respective notions of noninterference. As is

common in such type systems, we assume L forms a join semilattice with a unique least element ⊥

representing “completely public.”
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Γ(x) ⊑ ℓ

Γ ⊢ x : ℓ
−−−−−−−−

Γ ⊢ n : ℓ
−−−−−−−

Γ ⊢ e1 : ℓ1 Γ ⊢ e2 : ℓ2

Γ ⊢ e1 ⊙ e2 : ℓ1 ⊔ ℓ2

−−−−−−−−−−−−−−−−−−−−−−−

Figure 4.6: Typing rules for expressions in security-typed Imp.

Shared Typing Rules

[Skip]
Γ; pc ⊢px skip ⋄ ⊥
−−−−−−−−−−−−−−−− [If]

Γ ⊢px e : ℓ
Γ; pc ⊔ ℓ ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓ ⊢px c2 ⋄ ℓ′ex

Γ; pc ⊢px if (e) then {c1} else {c2} ⋄ ℓex ⊔ ℓ′ex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Assign]

Γ ⊢px e : ℓ
pc ⊔ ℓ ⊑ Γ(x)

Γ; pc ⊢px x := e ⋄ ⊥
−−−−−−−−−−−−−−−−−− [Seq]

Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′ex

Γ; pc ⊢px c1 ; c2 ⋄ ℓex ⊔ ℓ′ex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Try]
Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′ex

Γ; pc ⊢px try {c1} catch {c2} ⋄ ℓ′ex
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [Print]

Γ ⊢px e : ℓ pc ⊔ ℓ ⊑ ℓ′

Γ; pc ⊢px print(e, ℓ′) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−−

Progress-Sensitive Typing Rules Progress-Insensitive Typing Rules

[While-PS]
Γ ⊢ps e : ⊥ Γ;⊥ ⊢ps c ⋄ ⊥

Γ;⊥ ⊢ps while (e) do {c} ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PS]
Γ;⊥ ⊢ps throw(⊥) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−

[While-PI]
Γ ⊢pi e : ℓ Γ; pc ⊔ℓ ⊔ ℓex ⊢pi c ⋄ ℓex

Γ; pc ⊢pi while (e) do {c} ⋄ ℓex
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PI]
pc ⊑ ℓex

Γ; pc ⊢pi throw(ℓex ) ⋄ ℓex
−−−−−−−−−−−−−−−−−−−−−−−

Figure 4.7: Typing rules for commands in security-typed Imp.

4.5.1. Two Type Systems

Both type systems have two typing judgments: one for expressions and one for commands. The

typing judgments for expressions take the form Γ ⊢ e : ℓ, where Γ is a map from variables to

information flow labels, and ℓ is a label. The judgment says that e is well-typed and depends only

on information at or below label ℓ. The typing rules for expressions, which are the same for both

type systems, are presented in Figure 4.6.

The typing rules for commands are presented in Figure 4.7. As these rules differ between the

progress-sensitive and progress-insensitive type systems, we annotate the turnstyles with ps for
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progress-sensitive rules, pi for progress-insensitive rules, and px for rules that are identical in both

type systems.

The typing judgments for commands take the form Γ; pc ⊢px c ⋄ ℓex , where pc and ℓex are information-

flow labels. The pc label is a program-counter label that tracks the sensitivity of the control flow,

while the second label ℓex is an upper bound on the label of any exceptions c might raise. Note that

the rules listed in Figure 4.7 do not include any way to type check an inlined Asm program. We

address this concern in Section 4.5.3.

Program-counter labels are a standard technique to control implicit information flows—that is,

information leaked by the control flow (Denning and Denning, 1977; Sabelfeld and Myers, 2003).

For example, consider the following program where h has label ℓh and l has label ℓl with ℓh ̸⊑ ℓl:

if (h = 0) then {l := 0} else {l := 1}

While l is only ever explicitly set to constant values, its final value clearly depends on the secret h.

The pc label allows us to detect and eliminate these flows by tracking the sensitivity of the control

flow. Specifically, the If rule requires the condition’s label to flow to the pc in each branch, and the

Assign rule requires the pc to flow to the label of the variable being assigned. In the above example,

the label of the condition h = 0 is ℓh, so If requires c1 and c2 to type check with a pc where ℓh ⊑ pc.

Since Γ(l) = ℓl, Assign requires pc ⊑ ℓl. Transitivity of ⊑ thus requires ℓh ⊑ ℓl, which it does not,

so the program correctly fails to type check.

Exceptions can affect the control flow of a program, and therefore can also cause implicit flows of

information. Consider the following program.

if (h = 0) then {throw(ℓh)} else {skip} ; l := 1

Much like the previous example, this program only assigns a constant to l, yet it still leaks the value

of h. We use a standard technique (Myers, 1999; Pottier and Simonet, 2003) that relies on exception
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labels in the typing judgment. As previously mentioned, the exception label of a program c is an

upper bound on the labels of any exception c might raise. To eliminate exception-based leaks, the

Seq rule increases the pc label of the second command by the exception label of the first. The Try

rule makes similar use of the exception label, increasing the pc in the catch block, as that command

only executes if an exception is thrown.

The Skip rule is simple, as skip can never have an effect. Print produces a flow of information to

an output channel labeled ℓ′, so it checks that ℓ′ may safely see both the expression being written

and the fact that this command executed.

The rules for while loops and throw statements are different for the progress-sensitive and progress-

insensitive type systems, so we handle them separately.

Progress-Sensitive While and Throw Rules. In a progress-sensitive setting, the adversary

can observe nontermination. As a result, a program’s termination behavior can only safely depend

on completely public information. While-PS enforces this requirement in a standard, but highly

restrictive way (Volpano and Smith, 1997): the loop condition and the pc of the context must both

be the fully public label ⊥. Moreover, any exceptions thrown in the body of the loop could also

influence termination behavior, so those must be fully public as well.

Recall from Section 4.4 that a low observer cannot distinguish between an uncaught secret exception

and an infinite loop. Thus non-public exceptions create the same implicit flows as while loops, so

Throw-PS restricts exceptions in much the same way as While-PS restricts loops: everything

must be fully public.

Progress-Insensitive While and Throw Rules. In a progress-insensitive setting, the adversary

cannot see nontermination, so secrets can safely influence the termination behavior of a program.

The While-PI rule therefore allows loops with any pc. Since both the loop condition and any

exceptions the loop body throws influence whether the body is run, While-PI increases the pc in

the loop body by both the loop guard label and the body’s exception label.
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For the same reason, Throw-PI is more permissive than its progress-sensitive counterpart. In

particular, the label on the exception just needs to be at least as secret as the pc label.

4.5.2. Proving Security

Both type systems enforce their respective notions of noninterference (Definition 21). Unlike many

existing proofs of noninterference, our proofs using ITrees proceed by simple induction over the syntax

of Imp. This simplicity is made possible by the combination of two facts: our Imp semantics is given

by simple induction using ITrees combinators, and those combinators interact with indistinguishability

in predictable ways, as described by the metatheory of Section 4.4.

Type systems are inherently compositional: we are able to conclude that a program is secure knowing

nothing about subprograms other than that they also type check. However, our semantic definition of

noninterference is not fully compositional. To see this, consider the Imp program p = l := h ; throw(ℓ).

This program updates the state in an insecure way, assigning a high-security value to a low-security

variable, and then throws a low-security exception. In fully interpreted programs, the updated state

is part of the return value, but adversaries cannot observe that return value if an exception is thrown

(see Section 4.3), making p semantically secure. However, if we catch the exception, the adversary

once again can see the effect of the assignment l := h. Thus, p does not compose securely.

In order for our type system to enforce security compositionally, it enforces two properties beyond

noninterference. Each rules out programs which, like p above, are secure but do not compose securely.

The first describes how state and exceptions interact in a secure setting, which will rule out the

example program above. The second, called confinement, defines how effects are bound by the type

system.

Interaction of Exceptions and State. Our first goal is to semantically rule out programs like p

above, allowing us to reason compositionally about exception handlers. In order to do so, we need

to reason about what state updates are performed before an exception is thrown. However, since in

our semantics of Imp we interpret state events while leaving exceptions as ITree events, the result

state of an Imp program is forgotten when an exception is thrown.
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This correctly models our adversary, who cannot distinguish between private exceptions and silently

diverging programs. But in order to achieve compositionality, we need to keep information about the

final state before an exception is raised. We accomplish this with a condition on an alternative seman-

tics for Imp programs. In this semantics, exceptions are interpreted into the standard sum type rep-

resentation before state events are interpreted. This interpretation, interp hprog (interp hexc JcKc),

is a stateful function that returns a final state along with either a result of type unit or the label of an

exception. We can inspect this final state to ensure that the program always takes indistinguishable

states to indistinguishable states.

We formalize this property as follows, where the relation ∼=ℓ
Γ requires that states agree on a variable x

only when Γ(x) ⊑ ℓ, as in Section 4.4.4.

Definition 22 (Exceptions-and-State Property). A command c satisfies the px–exceptions-and-state

property if interp hprog (interp hexc JcKc) is statefully indistinguishable from itself under ∼=ℓ
Γ and

⊤ at every label ℓ.

Note the use of ⊤ as the output relation means we ignore whether or not c threw an exception, while

we still ensure that the final states are indistinguishable. Ignoring this information in this property

is acceptable because it is captured by our standard noninterference condition.

Confinement. Even with the exceptions-and-state property, implicit flows, like the motivating our

use of pc labels, can still break compositionality. Confinement fixes this.

In the typing judgment for commands, the pc and ℓex labels are both designed to constrain effects. If

a command type checks with pc and ℓex , it should have no effects visible below pc and no (uncaught)

exceptions above ℓex . Semantically, a program has no visible effects below pc if, for any label ℓ where

pc ̸⊑ ℓ, it is indistinguishable from skip. For any uncaught exception terminating a ITree, we simply

check that the exception’s label flows to ℓex . We formalize this idea into the following property

called confinement.

Definition 23 (Confinement). A command c is px-confined to pc with ℓex exceptions, if, for all
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labels ℓ such that pc ̸⊑ ℓ, the following conditions hold.

1. c is indistinguishable from skip at ℓ: interp hprog JcKc and interp hprog JskipKc are px-statefully

indistinguishable under ∼=ℓ
Γ and = at ℓ.

2. c makes no modifications to the state visible at ℓ: interp hprog (interp hexc JcKc) and

interp hprog (interp hexc JskipKc) are px-statefully indistinguishable under ⊤ and = at ℓ.

3. For all initial state heap states h and register states r where c throws an exception, the label of

that exception flows to ℓex :

E ⊢ (interp hprog (interp hexc JcKc))(r, h) ≈= ret (r′, h′, inr(ℓ′ex )) =⇒ ℓ′ex ⊑ ℓex

Together, these definitions restrict programs to those that compose securely, as required by the

type system. With this compositionality property, we can prove that our type system enforces the

conjunction of all three properties.

Theorem 22. If Γ; pc ⊢px c ⋄ ℓex , then c is px-noninterfering (Definition 21), satisfies the px–

exceptions-and-state property, and is px-confined to pc with ℓex exceptions.

4.5.3. Semantic Typing and Inline Asm

Both type systems above enforce security, but are highly conservative. Many secure programs fail

to type check, notably including any secure program with inlined Asm. To support our goal of

cross-language security reasoning and address this concern without the need to introduce a type

system for Asm, we provide a semantic typing (Jung et al., 2015) rule.

One would hope that the three conditions discussed above would be sufficient. However, the

possibility of undefined Asm behavior (see Section 4.2.4) necessitates an additional condition. We

thus introduce the notion of inline validity, which requires inlined Asm to depend only on the initial

heap state, not the initial register state, thereby ruling out undefined behavior.

Definition 24 (Inline Validity). An ASM program a is inline-valid if, given any two register states
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r1 and r2, and any heap states h, runs with (r1, h) and (r2, h) produce the same changes to the heap.

That is, if p = interp hprog (interp hexc JaKasm), then

printE ⊢ p(r1, h) ≈⊤×= p(r2, h).

Note that any Asm program that only ever reads from a register after it has written to that register

will satisfy this property. We also lift this definition to whole Imp programs by applying it separately

to each inlined Asm block.

Definition 25 (Validity). c is a valid IMP program if any inlined ASM program it contains is an

inline-valid ASM program.

Including validity with our other semantic conditions is sufficient to guarantee security, so we can

safely define the following semantic typing rule.

[Semantic]

c is px-noninterfering

c satisfies the px–exceptions-and-state property

c is px-confined to pc and ℓex

c is valid

Γ; pc ⊢px c ⋄ ℓex
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Adding this new rule to both type systems allows them to reason about multi-language programs

including inline Asm and larger systems, even when the syntactic type system cannot reason about

every component. Importantly, Semantic is sound from a security perspective. That is, Theorem 22

continues to hold for both extended type systems.

4.6. Preserving Noninterference Across Compilation

For a compiled language like Imp, noninterference is only part of the story. After all, rather than

run Imp code directly, programmers instead compile Imp to Asm and run the Asm. Compilation

can change programs significantly, and can introduce insecurity in the process. Thus, we need to
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Registers r ::= $0 | $1 | . . .
Operands o ::= r | n
Instructions i ::= add r1 ← r2, o | sub r1 ← r2, o | mul r1 ← r2, o

| eq r1 ← r2, o | leq r1 ← r2, o | not r ← o
| mov r1 ← r2 | load r ← x | store x← r | print(ℓ, r)

Branches b ::= jmp A | brz r A1 A2 | raise ℓ
Blocks B ::= A : i1 ; · · · ; in ; b
Programs p ::= Start : i1 ; · · · ; in ; b

B1 ; · · · ;Bm

Figure 4.8: Secure ASM syntax where x is a variable, A is an address, n is a natural number, and ℓ
is an information-flow label.

ensure that the compiler translates noninterfering Imp programs into noninterfering Asm programs.

We now turn our attention to the proof-engineering effort involved in providing such an assurance.

In particular, we show that (a) adding exceptions and information-flow labels to Imp does not

complicate the proof of compiler correctness, and (b) turning a proof of correctness into a proof of

noninterference preservation is simple using mixed transitivity (Theorem 12).

Note that, to build our compiler, we had to fix the number of information-flow labels. We thus

specialize our discussion of Imp from Section 4.5 to the two-point lattice L = {⊤,⊥}. Using any

other finite lattice would require only minimal changes.

4.6.1. Asm, Its Semantics, and the Compiler

Figure 4.8 presents the syntax of Asm, the simple assembly language that our compiler targets. An

Asm program is a sequence of blocks, where each block starts at some address A and consists of

a sequence of straight-line instructions followed by a single jump. The first block must be at the

special address Start.

Most Asm instructions write to exactly one register, computing the written value from a combination

of other registers and integer constants. For instance, add $0← $1, 1 takes the value of register $1,

adds one, and stores the result in register $0. The mov instruction copies the value of one register

into another, while load and store move information between registers and the heap. Finally, the

print instruction prints information to a stream, depending on the label ℓ.

83



Jumps are either direct jumps, conditional jumps, or exceptions. A direct jump jmp A immediately

moves execution to the beginning of the block with address A. A conditional jump brz r A1 A2

move execution to A1 if register r contains zero and A2 otherwise. The raise ℓ branch raises an

exception. Note that there is no equivalent of catching an exception. We assume that Asm programs

always jump to either the address of one of the program’s blocks or a special Exit address.

Rather than representing Asm syntax directly in our Coq code, we take a more compositional

approach and represent sub–Control-Flow Graphs (sub-CFGs). These represent the structure of part

of an Asm program. While a complete Asm program contains a unique Start address, sub-CFGs

may contain multiple addresses accessible to the outside. We refer to addresses which are accessible

to the outside as input addresses. Likewise, sub-CFGs may jump to undefined addresses, whereas

complete ASM programs always jump either to a defined address or Exit. We refer to the undefined

addresses a sub-CFG may jump to as its output addresses. Thus, a complete Asm program is a

sub-CFG with exactly one input address (Start) and exactly one output address (Exit).

Intuitively, sub-CFGs execute starting at some input address, potentially jumping internally several

times before they jump to some output address. To represent this pattern, we give sub-CFGs

semantics as functions from an address to an ITree that returns an address. That is, the semantics of

a sub-CFG takes as input the input address at which to start executing, and produces an ITree that

returns the output address the program jumps to. This structure is due to Xia et al. (2020), and

their semantics needed only minor changes to accommodate printing and exception-throwing.

In Xia et al.’s original compiler, Imp code always mapped to complete Asm programs. However,

to accommodate exception throwing, our compiler has an extra step of indirection. We map Imp

programs to sub-CFGs with exactly one input address but three output addresses. The first represents

Exit, as in a complete Asm program, while the second two represent the location of exception

handler code. Thus, we compile throw(ℓ) to a jump to the second address if ℓ = ⊥ and the third

address if ℓ = ⊤. To compile a try-catch command, we place one copy of the handler at the second

address and a second copy at the third address. That means any exception will jump to the handler

code, regardless of the label of the exception, matching the semantics we gave Imp in Section 4.3.
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Note that we still need separate addresses for each label to properly compile uncaught exceptions.

For inlined Asm code, we would hope to include it in the compiled code directly with no changes.

Unfortunately, if inlined Asm throws an exception with a raise instruction, the surrounding Imp

code can catch it, but embedding the raise unmodified in the compiled output would render the

exception uncatchable. To support catching these exceptions, we process inlined Asm to replace

raise instructions with jumps to the appropriate address. This change causes the inlined exception

to properly jump to the handler code.

While the infrastructure described above translates Imp code into sub-CFGs, the end goal of our

compiler is to translate complete Imp programs into complete Asm programs. The final step uses

the two output addresses for exceptions by linking the sub-CFG of the complete Imp program with

two different handlers. The low-security exception handler raises a low-security exception, while the

high-security exception handler raises a high-security exception. Thus, any Imp code that raises an

exception compiles to a complete Asm program that raises that same exception, while Imp code

that catches an exception compiles to a complete Asm program with equivalent control flow.

4.6.2. Compiler Correctness

We adapt Xia et al.’s [2020] proof of compiler correctness to account for the modifications we have

made to Imp and Asm. We formalize correctness by comparing the source and the target programs—

after interpretation—using weak bisimilarity. Intuitively, two stateful programs are weakly bisimilar

if, whenever they are given related start states, the resulting ITrees are weakly bisimilar. We use a

return relation Renv. Renv ignores the register files and compares heaps using a relation ∼=, which

ensures that they map equal variables to equal values. We can now state the correctness theorem for

the compile function.

Theorem 23. For any initial heap states h1, h2 such that h1 ∼= h2, any register states r1, r2, and a

valid IMP command c, the following equation holds

excE⊕ printE ⊢ interp himp JcKc (r1, h1) ≈Renv interp hasm Jcompile(c)Kasm (r2, h2)
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where Renv((_, h1,_), (_, h2,_)) ⇐⇒ h1 ∼= h2.

Notably, the changes necessary to adapt Xia et al.’s [2020] proof of correctness to our modified

compiler are small and isolated. Most cases of the inductive proof, corresponding to existing language

features, needed only cosmetic changes. The new language features required new, but conceptually

uninteresting, cases.

4.6.3. Compiler Security

We finally turn to our ultimate goal: proving that our compiler preserves security. There are two

important notions of security for our compiler, both of which require cross-language reasoning. The

first is that secure source programs are indistinguishable—by all adversaries—from target programs.

This property directly relates an Imp program to an Asm program. The second is that the compiler

preserves noninterference. While noninterference itself is a property of a single program, preserving

noninterference is a property of a translation between two languages, which requires cross-language

reasoning.

In order to formalize the idea of a secure Imp program being indistinguishable from its compilation,

we need to compare these programs, even though they come from different languages. Because we

defined seutt purely semantically, we can use it as easily as if we were comparing programs in the

same language. We use the return relation Rℓ
Γ, which again ignores the register file and ensures that

they map equal visible variables to equal values. The theorem then takes the following form.

Theorem 24. For any valid IMP program c, if interp hprog JcKc is noninterfering with state relation

Rℓ
Γ and return relation =, and if c is a valid IMP program, then the following seutt equation holds

for any label ℓ, arbitrary register states r1, r2 and heap states h1, h2 such that h1 ∼=ℓ
Γ h2.

excE⊕ printE ⊢px interp hprog JcKc (r1, h1) ≈
ℓ
Rℓ

Γ
interp hprog Jcompile(c)Kasm (r2, h2)

Our second theorem is simply that our compiler takes noninterfering Imp programs to noninterfering

Asm programs.
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Theorem 25 (Noninterference Preservation). For a valid IMP program c, if interp hprog JcKc is

noninterfering with state relations Rℓ
Γ and return relation =, then the same holds for its compilation.

That is, interp hprog Jcompile(c)Kasm is noninterfering with Rℓ
Γ and =. This result holds for both

progress-sensitive and progress-insensitive noninterference.

Notably, the proofs of both theorems follows directly from Theorem 23 and mixed transitivity,

showing the utility of mixed transitivity for cross-language security reasoning.
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CHAPTER 5

Interaction Tree Specifications

This chapter was previously published as Lucas Silver, Eddy Westbrook, Matthew Yacavone, and

Ryan Scott. Interaction Tree Specifi- cations: A Framework for Specifying Recursive, Effectful

Computations That Supports Auto- Active Verification. In Karim Ali and Guido Salvaneschi,

editors, 37th European Conference on Object-Oriented Programming (ECOOP 2023), volume

263 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1–30:26, Dagstuhl,

Germany, 2023c. Schloss Dagstuhl – Leibniz- Zentrum für Informatik. ISBN 978-3-95977-281-5. doi:

10.4230/LIPIcs.ECOOP.2023.30. URL https://drops.dagstuhl.de/opus/volltexte/2023/18223. I was

the primary author and did most of the research.

5.1. Introduction

It is particularly difficult to reason about low-level code that contains complicated manipula-

tions of pointer structures on the heap, as is common in languages like C, C++, and LLVM.

Recently, researchers have tackled this problem using the observation that programs that are well-

typed in a memory-safe, Rust-like type system are basically functional programs (He et al., 2021;

Matsushita et al., 2022, 2020; Astrauskas et al., 2019; Ho and Protzenko, 2022). That is, there exists

a program in a functional language whose behavior is equivalent to the original, heap-manipulating

program. This functional program is called a functional model. Most prior work relies only implicitly

on the functional model. In other work, such as VST (Appel, 2011), it is idiomatic for users to

invent a functional model, prove it correct with respect to the original program, and then directly

reason about the functional model. In contrast, the Heapster tool (He et al., 2021) automatically

reifies the functional models into concrete code, represented in Coq as an ITree. Proof engineers

can then verify properties about the derived functional code, and ensure those properties hold on

the original program. This chapter presents a variation of ITrees for writing specifications over this

derived functional code and shows how to reason about these specifications.

The Heapster tool consists of two components: a memory-safe type system for LLVM code, and a
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translation tool that produces an equivalent functional program from any well-typed LLVM program.

Heapster uses these components to break verification of heap manipulating programs into two phases:

a memory-safe type-checking phase that generates an ITree-based program that is equivalent to the

original program; and a behavior-verification phase that ensures that the generated program has

the correct behavior. Previous work has left open major questions about the behavior verification

phase, namely, what should the language of specifications be and how do we actually prove that the

programs satisfy the specifications.

This work answers these questions by developing a logic well-suited to reasoning about the programs

output by Heapster, as well as tools to work with these logical formulae. Taken together, the

Heapster tool and this work form a two-step pipeline for verifying low-level, heap manipulating

programs. Heapster transforms low-level, heap manipulating programs into equivalent functional

programs. This chapter presents techniques to write and prove specifications over the resulting

functional programs. Alongside Heapster, these techniques form a pipeline for verifying low-level,

heap manipulating programs.

In this work, we present interaction tree specifications, or ITree specifications. ITree specifications are

an auto-active verification framework for programs based on ITrees. Auto-active verification is a

verification technique that merges user input and automated reasoning to leverage the benefits of

each. ITree specifications are designed to be able to write and verify specifications about the output

programs of the Heapster translation tool, which are written in terms of ITrees.

The main body of work that takes on the task of verifying monadic programs is the Dijkstra

monad literature (Maillard et al., 2019; Swamy et al., 2013; Ahman et al., 2017; Swamy et al., 2016).

However, most of the Dijkstra monad literature cannot handle the kinds of termination sensitive

specifications that we need. These papers either assume a strongly normalizing language, or handle

only partial specifications. The exception to this is the work presented in Chapter 3. However,

while that work does have a rich enough specification language for our goals, it has two significant

shortcomings. First, the work provides no reasoning principles for arbitrary recursive specifications.

Second, the work does not attempt to automate the verification of these specifications. This chapter
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accomplishes both of these goals.

This work is based on the idea of augmenting ITrees with operations for logical quantifiers. We show

that this idea leads to a language of specifications that is:

• easy to read, because the specifications are simply programs annotated with logical quantifiers,

• capable of encoding recursive specifications, because the underlying computational language

has a powerful recursion operator, and

• amenable to auto-active verification, because specifications are syntactic constructs enabling

syntax-directed inference rules.

ITrees represent computations as potentially infinite trees whose nodes are labelled with events.

Events are syntactic representations of computational effects, like raising an error, or sending data

from a server. ITrees can be used to represent the semantics of recursive, monadic, interactive

programs. ITree specifications are ITrees enriched with events for logical quantifiers. This language

of specifications has the capability to express purely executable computations, abstract specifications,

and combinations of both. For example, consider the following computation server_impl for a simple

server program that sorts lists which are sent to it:
Definition server_impl : unit → itree_spec E void :=
rec_fix_spec (fun rec _ ⇒

l � trigger rcvE;;
ls � sort l;;
trigger (sendE ls);;
rec tt

).

This specification is defined with rec_fix_spec, a recursion operator (defined in Section 5.4) where

applications of the rec argument correspond to recursive calls. The body of the recursive function

first calls trigger rcvE, which triggers the use of the receive event rcvE, causing the program to wait

to receive data. The list l that is received is then passed to the sort function, defined in Section 5.6,

which is a recursive implementation of the merge sort algorithm. Finally, the sorted list returned

by sort is sent as a response with trigger (sendE ls), and the server program loops back to the

beginning by calling rec.
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Now, consider the following specification of the behavior of our server using a combination of

executable and abstract features:
Definition server_spec : unit → itree_spec E void :=
rec_fix_spec (fun rec _ ⇒

l � trigger rcvE;;
ls � ∃_spec (list nat);;
assert_spec (Permutation l ls);;
assert_spec (sorted ls);;
trigger (sendE ls);;
rec tt).

This function acts mostly like server_impl but, instead of computing a sorted list, it uses the

existential quantification operation ∃_spec to introduce the list value ls, which it then asserts is a

sorted permutation of the initial list. By leaving this part of the specification abstract, it allows

the user to express that it is unimportant how the list is sorted, as long as the response is a sorted

permutation of the input list. The send and receive events, however, are left concrete, allowing the

user to specify what monadic events should be triggered in what order. This specification implicitly

defines a liveness property of the server; it will reject any program that fails to eventually perform

the next send or receive. By using a single language for programs and specifications, our approach

provides a natural way for users to control how concrete or abstract the various portions of their

specifications are. Our approach then provides auto-active tools for proving that programs refine

these specifications.

Necessary background explaining ITrees and Heapster is given in Section 5.2 and Section 5.3. The

contributions of this chapter are as follows:

• ITree specifications, a data structure for representing specifications over monadic, recursive,

interactive programs, presented in Section 5.4

• a specification refinement relation over ITree specifications, along with collection of verified,

syntax-directed proof rules for refinement also presented in Section 5.4,

• tools for encoding and proving refinements involving total correctness specifications in ITree

specifications presented in Section 5.5,
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• an auto-active verification technique briefly discussed in Section 5.6

• an evaluation of the presented techniques in the form of verifying a collection of realistic C

functions using ITree specifications and Heapster is presented in Section 5.6.

5.2. Interaction Trees Background

Section 5.6 evaluates the ITree specifications framework by using it in concert with the Heapster

translation tool to verify C code. However, the translation tool cannot target ITrees as defined in

Chapter 2. This is due to interactions between Coq universe levels and event type families, which

are used to model recursive calls. In order to avoid this issue, we develop a variant of ITrees that is

designed to interact differently with Coq universe levels (Coq development team, 2023).

The key difference in this variant is that event signatures are represented as types, in Type, rather

than type families, in Type → Type. This change necessitates a further change to the representation

of the response type of events. In the original definition, the response type is carried in the type of a

particular event. The event e : E A is an event with the event type signature E that has the response

type A. For the new definition, the event has a type, E, and its response type is determined by a

separately defined function, in E → Type. For ease of use, this function is provided in a type class.

This section first provides background information about universe levels in Coq and then uses that

information to show an example of code that we cannot write in the original variant of ITrees.

Finally, it introduces the new definition and demonstrates that it can handle that code example.

5.2.1. Coq Universe Levels

In Coq, there is no separation between types and expressions. Just as it contains functions of type

nat → bool, it also contains functions of type nat → Type or even Type → Type. In Coq, Type is

both a type and an expression that itself has a type. For many purposes, we can treat Type as

an inhabitant of Type. In fact, when run with default settings, Coq will report that Type : Type.

However, this is a simplification of the actual behavior of the type system. Type theories where Type

is in Type are inconsistent due to Girards Paradox (Coquand, 1999).
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[Cont]
Type@{a} : Type@{b}

a≤ b
−−−−−−−−−−−−−−−−−−

[Quant]

c : ∀ (A : Type@{a}), ... → t arg1 ... argn
c is a constructor of t t arg1 ... argn : Type{b}

a < b
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5.1: Universe levels in Coq

CoInductive itree (E : Type@{a} → Type@{b}) (R : Type@{c}) : Type@{d} :=
| Ret (r : R) : itree E R
| Tau (t : itree E R) : itree E R
| Vis : ∀{A : Type@{a}} (e : E A) (k : A → itree E R), itree E R.

Figure 5.2: ITree definition with explicit universe levels

Girard’s Paradox is analogous to Russell’s Paradox in set theory. And much like with Russell’s

Paradox, type theories typically avoid Girard’s Paradox by replacing a unified type of types with

a collection of type universes, each indexed by a natural number. In Coq, these universe levels

are generated automatically during type checking. A Coq type at universe level a can be written

explicitly as Type@{a}. In this system, a type universe contains types at strictly lower universe levels.

In particular, Type@{a} : Type@{b} exactly when a < b.

Much like Russell’s Paradox, Girard’s Paradox is only possible in type theories where a type can be

defined by quantifying over a collection of types that includes itself. Universe levels are designed to

prevent users from defining such types. To this end, many typing rules in Coq contain constraints

on the universe levels. For the purposes of this chapter, we only need to focus on the constraints

generated when an inductive or coinductive type constructor quantifies over types. Figure 5.1

presents this constraint as an inference rule. We focus on this case because it applies to the original

ITrees definition, namely the Vis constructor, presented with explicit universe levels in Figure 5.2.

Given a term c which quantifies over a type A : Type@{a}, where c is a constructor for a type

t arg1 ... argn in type universe level b, Coq will enforce that a < b.
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Inductive addE : Type@{a} → Type@{b} :=
| add_intro (n : nat) : addE (nat → itree voidE nat).

Definition lift {E R}: itree voidE R → itree E R :=
(* omitted *)

Definition add (n : nat) : itree voidE (nat → itree voidE nat) :=
mrec (

fun ’(add_intro n) ⇒
match n with
| 0 ⇒ ret (fun m ⇒ ret m)
| S n ⇒ addf � trigger (add_intro n);;

ret (fun m ⇒ fmap S (lift (addf m)))
end

) (add_intro n).

Figure 5.3: ITree model of addition

5.2.2. Approaching General Fixpoints with Interaction Trees

The verification framework presented in this chapter relies on a translation tool from well-typed

programs to ITrees. Modelling these well-typed programs requires modelling recursive functions

that can return functions. This section presents a concrete example of a function that can return

functions and explains why that poses problems for the ITree representation. The following code

implements addition by pattern matching on the first natural number to construct a function from

natural numbers to natural numbers.

fix add n.

match n with

| 0 => λ m. m

| S n => λ m. S (add n m)

This implementation of addition begins by pattern matching on the first argument. In the zero case,

it returns the identity function. In the successor of n case, it returns a function that recurses on n

and its argument, and returns the successor of the result. In this definition, recursive calls to the

add function return a function from natural numbers to natural numbers. This is in contrast to the

typical way of defining add, where a recursive call requires both natural number inputs, and returns

the natural number output.
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Modelling code like poses a problem for the previously presented definition of ITrees. Figure 5.2

presents the definition of ITrees with explicit universe levels. It shows that that all response types, A,

must be in universe level a and that the full ITree datatype, itree E R, is in universe level d. The

constraint presented in Figure 5.1 further indicates that a must be strictly less than d because the

Vis constructor quantifies over Type@{a}.

Figure 5.3 proposes a model of the previously defined addition function written in ITrees with the

mrec combinator. It models recursive calls that return functions with the addE event. The only

constructor of addE takes in a natural number and has the response type with models possibly

divergent functions from natural numbers to natural numbers, nat → itree voidE nat. Much like

the code it models, it pattern matches on the first natural number. In the zero case, it returns a

function that returns its argument. In the successor of n case, it triggers a recursive call containing

the payload n, and binds that call to a continuation that returns a function that applies the recursive

call response to its argument, coerces the result to an ITree with addE events, and maps the successor

function across that ITree.

However, this code is rejected by the Coq type checker because it violates universe level constraints.

We already know that a < d because of constraints generated by the Vis constructor. Because the

recursive calls all have type addE (nat → itree voidE nat), we have the additional constraint that

d≤ a. We use a type of functions into ITrees as the response type of addE. This type of functions

lives at the same universe level as ITrees and is used in a context that requires it to be coerced to

Type@{a}. And there is no way to satisfy the system of inequalities d≤ a < d.

In the following section, I present a version of ITrees that does not share this inconsistency.

5.2.3. Alternate Definition of Interaction Trees

Like the definition presented in Chapter 2, this alternate definition of ITrees represents programs as

potentially infinite trees whose nodes are labelled with events. However, in this definition, events

are all inhabitants of a single event type E, rather than a type family. The response type, which

determines the type that indexes branches of this event node , is determined by a separately defined
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Class EncodingType (E : Type@{a}) : Type :=
response_type : E → Type@{a}.

CoInductive itree (E : Type@{a}) {̀EncodingType E} (R : Type@{a}) : Type@{a} :=
| Ret (r : R)
| Tau (t : itree E R)
| Vis (e : E) (k : response_type e → itree E R).

Figure 5.4: Alternate ITrees definition

function. The alternate definition of ITrees is presented in Figure 5.4. The EncodingType typeclass

contains a function, response_type, from the type of events into Type. ITrees are defined for any

event type which has an EncodingType instance, and uses the response_type function to compute the

input type of the continuation k in the Vis constructor. We leverage the EncodingType typeclass in

order to avoid explicitly including a particular response_type function every time we reference the

itree type.

This definition avoids any quantification over types, replacing them with applications of the

response_type function. Figure 5.4 also includes explicit universe levels for many of the types,

which demonstrate why this definition lacks the problematic universe level constraints of the original.

The definition fixes a universe level a and enforces that both the type of events, E, and the output of

the response_type function are inhabitants of the type universe level a. Because the Vis constructor

uses the response_type function to compute the input type of the continuation instead of using type

quantification, we can assign both the type of ITrees, itree E R, and the type of events, E, the same

universe level.

With this definition, we can write the code presented in Figure 5.3 with minimal modifications and

actually make it type check. This properly typed code is presented in Figure 5.5. Because the

definition is so close to the original, we can rewrite all of the combinators and metatheory presented

in Chapter 2. Key definitions referenced in the rest of this chapter are presented in Appendix A.

5.3. Functional Model Extraction with Heapster

This section introduces the Heapster tool for specification extraction. We present Heapster in order

to provide context for the evaluation of this work in Section 5.6. In the evaluation, we demonstrate
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Inductive addE : Type@{a} :=
add_intro (n : nat).

Instance addE_encoding : EncodingType addE :=
fun _ ⇒ nat → itree void nat.

Definition add (n : nat) : itree void (nat → itree void nat) :=
mrec (

fun ’(add_intro n) ⇒
match n with
| 0 ⇒ ret (fun m ⇒ ret m)
| S n ⇒ addf � trigger (add_intro n);;

ret (fun m ⇒ fmap S (lift (addf m)))
end

) (add_intro n).

Figure 5.5: Alternate definition of ITree model of addition

how effective ITree specifications can be when paired with a tool like Heapster. We start with a

collection of low-level, heap manipulating C programs, use Heapster to produce equivalent functional

programs, and finally use ITree specifications to specify and verify the output programs.

There is a growing body of work (Astrauskas et al., 2019; Matsushita et al., 2020, 2022; He et al.,

2021) based on the idea that programs that satisfy memory-safe type systems like Rust can be

represented with equivalent functional programs. Rust’s pointer discipline, which ensures that all

pointers in a program are either shared read or exclusive write, allows us to reason about the effects

of pointer updates purely locally. This locality property can be used to define a pure functional

model of the behaviors of a program, which can in turn be used to verify properties of that program.

Whereas some work uses this notion of a functional model implicitly, functional model extraction is

the idea that the functional model can be extracted automatically as an artifact that can be used

for verification. Functional model extraction separates verification into two phases: a type-checking

phase, where the functions in a program are type-checked against user-specified memory-safe types;

and a behavior verification phase, where the user verifies the functional models that are extracted

from this type-checking process. The Heapster tool (He et al., 2021) is an implementation of the idea

of functional model extraction. Heapster provides a memory-safe, Rust-like type system for LLVM,

along with a typechecker. Heapster also provides a translation from well-typed LLVM programs to

monadic, recursive, interactive programs, modeled with ITrees, that describe a behavioral model
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Value Types T ::= bv n | llvmptr n | · · ·
Expressions e ::= n | llvmword e | · · ·
RW Modality rw ::= W | R
Permissions τ ::= ptr ((rw, e) 7→ τ) | τ1 ∗ τ2 | τ1 ∨ τ2

| ∃x : T.τ | eq(e) | µ X.τ | X | · · ·

Figure 5.6: An Abbreviated Grammar of the Heapster Type System

of the original program. This translation is inspired by the Curry-Howard isomorphism. Heapster

types are essentially a form of logical propositions regarding the heap, so, by the Curry-Howard

isomorphism, it is natural to view typing derivations, a form of proof, as a program. We give a brief

overview of the Heapster type system and its functional model extraction process in this section and

illustrate it with an example.

The Heapster type system is a permission type system. Typing assertions of the form x : τ mean

that the current function holds permissions to perform actions allowed by τ on the value contained in

variable x. The central permission construct of Heapster is the permission to read or write a pointer

value. Like Rust, Heapster is an affine type system, meaning that the permissions held by a function

can change at different points in the function. In particular, a command can consume a permission,

preventing further commands from using that permission again. Also like Rust, Heapster allows

read-only permissions to be duplicated, allowing multiple read-only pointers to the same address,

but does not allow write permissions to be duplicated. This enforces the invariant that all pointers

are either shared read or exclusive write, a powerful property for proving memory-safety.

Figure 5.6 gives an abbreviated grammar for the Heapster type system. The value types T are

inhabited by pieces of first order data. In particular, they contain the type bv n of n-bit bitvectors

(i.e., n-bit binary values) and the type llvmptr n of n-bit LLVM pointers, among other value types

not discussed here. Heapster uses the CompCert memory model (Leroy and Blazy, 2008), where

LLVM values are either a word value or a pointer value represented as a pair of a memory region

plus an offset in that region. The expressions e include numeric literals n and applications of the

llvmword constructor of the LLVM value type to build an LLVM value from a word value.

98



The first permission type in Figure 5.6, ptr ((rw, e) 7→ τ), represents a permission to read or

write (depending on rw) a pointer at offset e. Write permission always includes read permission.

This permission also gives permission τ to whatever value is currently pointed to by the pointer

with this permission. Permission type τ1 ∗ τ2 is the separating conjunction of τ1 and τ2, giving

all of the permissions granted by τ1 or τ2, where τ1 and τ2 contain no overlapping permissions.

Permission type τ1 ∨ τ2 is the disjunction of τ1 and τ2, which either grants permissions τ1 or τ2. The

existential permission ∃x : T.τ gives permission τ for some value x of value type T . The equality

permission eq(e) states that a value is known to be equal to an expression e. This can be viewed as

a permission to assume the given value equals e. Finally, µ X.τ is the least fixed-point permission,

where permission variable X is bound in τ . This satisfies the fixed-point property, that µX. τ is

equivalent to [µX. τ/X]τ .

As a simple example, the user can define the Heapster type

int64 = ∃x : bv 64. eq(llvmword x)

This Heapster type describes an LLVM word value, i.e., an LLVM value that equals llvmword x for

some bitvector x.

As a slightly more involved example, consider the following definition of a linked list structure in C:

typedef struct list64_t { int64_t data;

struct list64_t *next; } list64_t;

A C value of type list64_t* represents a list, where a NULL pointer represents the empty list and

a non-NULL pointer to a list64_t struct represents a list whose head is the 64-integer contained in

the data field and whose tail is given by the next field.

The following Heapster type describes this linked list structure:

list64⟨rw⟩ = µX. eq(llvmword 0) ∨ (ptr ((rw, 0) 7→ int64) ∗ ptr ((rw, 8) 7→ X))
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int64_t is_elem (int64_t x, list64_t *l) {

x : int64, l : list64⟨R⟩
x : int64, l :eq(llvmword 0) OR x : int64, l :ptr ((R, 0) 7→ int64) ∗ ptr ((R, 8) 7→ list64⟨R⟩)
if (l == NULL) {

x : int64, l :eq(llvmword 0)

return 0;
} else {

x : int64, l :ptr ((R, 0) 7→ int64) ∗ ptr ((R, 8) 7→ list64⟨R⟩)
if (l->data == x) { return 1; }
else {

list64_t *l2 = l->next;

x : int64, l :ptr ((R, 0) 7→ int64) ∗ ptr ((R, 8) 7→ eq(l2)), l2 : list64⟨R⟩
return is_elem (x, l2);

}}}

Figure 5.7: Type-checking the is_elem Function Against Type x : int64, l : list64⟨R⟩⊸ r : int64

The list64⟨rw⟩ type is parameterized by a read-write modality rw, which says whether it describes a

read-only or read-write pointer to a linked list. The permission states that the value it applies to

either equals the NULL pointer, represented as llvmword 0, or points at offset 0 to a 64-bit integer

and at offset 85 to an LLVM value that itself recursively satisfies the list64⟨rw⟩ permission. Note

that the fact that it is a least fixed-point implicitly requires the list to be loop-free.

Figure 5.7 illustrates the process of Heapster type-checking on a simple function is_elem that checks

if 64-bit integer x is in the linked list l. Note that Heapster in fact operates on the LLVM code that

results from compiling this C code, but the type-checking is easier to visualize on the C code rather

than looking at its corresponding LLVM. Ignoring the Heapster types for the moment, which are

displayed with a grey background in the figure, is_elem first checks if l is NULL, and if so returns 0

to indicate that the check has failed. If not, it checks if the head of the list in l->data equals x, and

if so, returns 1. Otherwise, it recurses on the tail l->next.

The Heapster permissions for this function are

x : int64, l : list64⟨R⟩⊸ r : int64

5We assume a 64-bit architecture, so offset 8 references the second value of a C struct.
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The lollipop symbol, ⊸, is used to write Heapster function types. This type means that input x is a

64-bit integer and l is a read-only linked list pointer and the return value r is a 64-bit integer value.

To type-check is_elem, Heapster starts by assuming the input types for the arguments. This is

displayed in the first grey box of Figure 5.7. In order to type-check the NULL comparison on l,

Heapster must first unfold the recursive permission on l and then eliminate the resulting disjunctive

permission. This latter step results in Heapster type-checking the remaining code twice, once for

each branch of the disjunct. More specifically, the remaining code is type-checked once under the

assumption that l equals NULL and once under the assumption that it points to a valid list64_t

struct. In the first case, the NULL check is guaranteed to succeed, and so the if branch is taken

with those permissions, while in the second, the NULL check is guaranteed to fail, so the else

branch is taken.

In the if branch, the value 0 is returned. Heapster determines that this value satisfies the required

output permission int64. In the else branch, l->data is read, by dereferencing l at offset 0. This

is allowed by the permissions on l at this point in the code. If the resulting value equals x, then

1 is returned, which also satisfies the output permission int64. Otherwise, l->next is read, by

dereferencing l at offset 0, and the result is assigned to local variable l2. This assigns list64⟨R⟩

permission to l2. The permission on offset 8 of l is updated to indicate that the value currently

stored there equals l2. The list64⟨R⟩ permission on l2 is then used to type-check the subsequent

recursive call to is_elem.

Once a function is type-checked, Heapster performs functional model extraction to extract a pure

functional model of the function’s behavior. Functional model extraction translates permission types

to Coq types and typing derivations to Coq programs. The type translation is defined as follows:

Jptr ((rw, e) 7→ τ)K = JτK Jτ1 ∗ τ2K = Jτ1K ∗ Jτ2K

Jτ1 ∨ τ2K = Jτ1K + Jτ2K J∃x : T.τK = {x : JT K & JτK}

Jeq(e)K = unit Jµ X.τK = user-specified type A

isomorphic to J[µ X.τ/X]τK
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Pointer permissions ptr ((rw, e) 7→ τ) are translated to the result of translating the permission τ

of the value that is pointed to. This means that functional model extraction erases pointer types,

which are no longer needed in the resulting functional code. Conjuctive permissions are translated

to pairs, disjunctive permissions are translated to sums, and existential permissions are translated to

dependent pairs (using a straightforward translation interpT of value types that we omit here).

The equality type eq(e) is translated to the Coq unit type unit, meaning that the extracted model

contains no information. We already proved the equality in the typechecking phase, and we have no

use for the particular equality proof the typechecker provided. To translate a least fixed-point type

µ X.τ , the user specifies a type that satisfies the fixed-point equation, meaning a pair of functions

fold : J[µ X.τ/X]τK→ Jµ X.τK unfold : Jµ X.τK→ J[µ X.τ/X]τK

that form an isomorphism.

As an example, the translation of int64 is the Coq sigma type {x:bitvector 64 & unit}. Note

that Heapster will in fact optimize away the unnecessary unit type, yielding the type bitvector 64.

As a slightly more complex example, in order to translate the list64⟨rw⟩ described above, the user

must provide a type T that is isomorphic to the type

unit + (bitvector 64 * T)

The simplest choice for T is the type list (bitvector 64). In this way, the imperative linked list

data structure defined above in C is translated to the pure functional list type.

Rather than defining the translation of Heapster typing derivations into Coq programs here, we

illustrate the high-level concepts with our example and refer the interested reader to He et al. (2021)

for more detail. The translation of is_elem is given as a Coq model is_elem_spec in Figure 5.8.

At the top level, this mdeol uses rec_fix_spec to define a recursive function to match the recursive

definition of is_elem. This binds a local variable rec to be used for recursive calls.

To understand the rest of the model, we step through the Heapster type-checking depicted in
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Definition is_elem_spec : bitvector 64 * list (bitvector 64) →
itree_spec E (bitvector 64) :=

rec_fix_spec (fun rec ’(x,l) ⇒
either
unit (bitvector 64 * list (bitvector 64)) (* input types *)
(itree_spec _ (bitvector 64)) (* output type *)
(fun _ ⇒ Ret (intToBv 64 0)) (* nil case *)
(fun ’(hd,tl) ⇒ (* cons case *)

if bvEq 64 hd x then Ret (intToBv 64 1) (* return 1 if found *)
else rec (x,tl)) (* recursive call *)

(unfoldList l)). (* unfolded argument *)

Figure 5.8: Extracted Functional Model for is_elem

Figure 5.7. The first step of that type assignment unfolds the permission type list64⟨W ⟩ on l. The

corresponding portion of the model is the call to unfoldList, which unfolds the input list l to a

sum of a unit or the head and tail of the list. The next step of the Heapster type-checking is to

eliminate the resulting disjunctive permission on l. The corresponding portion of the model is a call

to the either sum elimination function. In the left-hand case of the disjunctive elimination, the

NULL test of the C program succeeds, and 0 is returned. Similarly, in the Coq model, the nil case

returns the 0 bitvector value.

In the right-hand case of the disjunctive elimination of the Heapster type-checking, the NULL test

fails, and so l is a valid pointer to a C struct with data and next fields. This is represented by

the pattern-match on the cons case in the Coq model, yielding variables hd and tl for the head

and tail of the list. The body of this case then tests whether the head equals the input variable x,

corresponding to the x==l->data expression in the C program. If so, then the bitvector value 1 is

returned. Otherwise, the model performs a recursive call, passing the same value for x and the tail

of the input list for l.

5.4. ITree Specifications and Refinement

In this paper, we introduce a specialization of the ITree data type that encodes specifications over

ITrees. To do this, we take some base event type family E, and extend it with constructors for

universal and existential quantification. This is formalized in the following definition for SpecEvent.
Inductive SpecEvent (E : Type) {̀EncodingType E} : Type :=
| Spec_vis (e : E) : SpecEvent E
| Spec_∀ (A : type) : SpecEvent E
| Spec_∃ (A : type) : SpecEvent E
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.

The Spec_vis constructor allows you to embed a base event e : E into the type SpecEvent E. The

Spec_∀ constructor signifies universal quantification, and the Spec_∃ constructor signifies existential

quantification.

We define ITree specifications as the type of ITrees with a SpecEvent as the event type.
Definition itree_spec (E : Type) {̀EncodingType E} (R : Type) :=

itree (SpecEvent E) R.

Because ITree specifications are actually a special kind of ITree, they inherit all the useful metatheory

and code defined for ITrees. In particular, we can reason about them equationally with eutt, and

apply the monad functions to them.

5.4.1. ITree Specification Refinement

The notion that a program adheres to a specification is defined in terms of refinement over specifica-

tions. Refinement is the main judgment involved in using ITree specifications, and is the primary

form of proof goal proved by the provided automation tool. Intuitively, the logical quantifier events

mean that an ITree specification represents a set of computations. A fully concrete ITree specification,

with no logical quantifier events, represents a singleton set containing a single concrete ITree, while a

more abstract specification might represent a larger set. The refinement relation is then defined such

that, if one ITree specification refines another, then the former represents a subset of the latter. So,

for instance, if we prove that a concrete specification refines a more abstract specification, then we

have shown that the singleton program in the set represented by the concrete specification satisfies

the specification. Note that refinement is actually a coarser relation than subset; this is discussed

later in Section 5.4.4.

The ITree specification refinement relation is based on the idea of refinement of logical formulae with

the eutt relation. In the refinement relation, we eliminate quantifiers in our specification logic using

quantifiers in the base logic, in this case Coq. Quantifiers on the right of a refinement get eliminated

to the corresponding Coq quantifiers, while quantifiers on the left get eliminated to the dual of the
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[refinesret]
RR r1 r2

RPre; RPost ⊢ (ret r1) ⊑RR (ret r2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [refinestau]

RPre; RPost ⊢ t1 ⊑RR t2

RPre; RPost ⊢ Tau t1 ⊑RR Tau t2
================================

[refinestaul]
RPre; RPost ⊢ t1 ⊑RR t2

RPre; RPost ⊢ Tau t1 ⊑RR t2
−−−−−−−−−−−−−−−−−−−−−−−−−−−− [refinestaur]

RPre; RPost ⊢ t1 ⊑RR t2

RPre; RPost ⊢ t1 ⊑RR Tau t2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[specvis]
RPre e1 e2 ∀ a b, RPost e1 e2 a b→ RPre; RPost ⊢ (k1 a) ⊑RR (k2 b)

RPre; RPost ⊢ Vis Spec_vis e1 k1 ⊑RR Vis Spec_vis e2 k2
============================================================================

[forallr]
∀ a, RPre; RPost ⊢ t ⊑RR k a

RPre; RPost ⊢ t ⊑RR Vis Spec_∀ k
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [existsr]

∃ a, RPre; RPost ⊢ t ⊑RR k a

RPre; RPost ⊢ t ⊑RR Vis Spec_∀ k
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[foralll]
∃ a, RPre; RPost ⊢ k a ⊑RR t

RPre; RPost ⊢ Vis Spec_∀ k ⊑RR t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [existsl]

∀ a, RPre; RPost ⊢ k a ⊑RR t

RPre; RPost ⊢ Vis Spec_∀ k ⊑RR t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5.9: Inference rules for ITree specifications refinement relation

corresponding Coq quantifier. This means that both a Spec_∀ on the right and a Spec_∃ on the left

get eliminated to a Coq ∀. And both a Spec_∃ on the right and a Spec_∀ on the left get eliminated to

a Coq ∃. ITree specifications form a lattice with refinement serving as the preorder, Spec_∀ acting as

the complete meet, and Spec_∃ acting as the complete join. The portions of ITree specifications with

computational content, including the Ret leaves, Spec_vis nodes, and silent Tau nodes, get compared

as they do in the eutt relation.

The ITree specification refinement relation shares many mechanical details with the eutt relation.

Both are defined by taking the greatest fixed point of an inductively defined relation to get a

mixture of inductive and coinductive properties. Both behave identically on Tau and Ret nodes. The

refinement relation differs in its inductive rules for eliminating logical quantifiers, and in its usage of

heterogeneous event relations to enforce pre- and post- conditions on Spec_vis events. These pre-

and post- conditions are necessary in order to give the refinement relation the flexibility needed to

state the reasoning principle for mrec.

Definition 26 (ITree Specification Refinement). Given:
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• event signatures E1 and E2;

• return types R1 and R2;

• a precondition relation over E1 and E2, RPre;

• a postcondition relation over E1 and E2, RPost;

• and a return relation over R1 and R2, RR,

refinement up to RPre, RPost and RR, a relation between itree E1 R1 and itree E2 R2, is defined

with the inference rules presented in Figure 5.9. We write this relation as RPre; RPost ⊢ t1 ⊑RR t2.

Several of the inference rules presesnted in Figure 5.9 work exactly like corresponding inference rules

in the rutt relation. In particular, the refinesret, refinestau, refinestaul, and refinestaur

rules handle return values and Tau nodes in the standard way. The specvis rule handles Spec_vis

nodes just as the rutt relation handles any event nodes. Just like ruttvis, specvis relates Spec_vis

nodes as long as two conditions hold on the events, e1 and e2, and the continuations, k1 and k2.

The ITree specifications must satisfy the precondition, by having e1 and e2 satisfy RPre. And the

ITree specifications must satisfy the post condition by having k1 a refine k2 b, whenever a and b

are related by RPost e1 e2. The added complications of this rule allow us to reason about mutually

recursive functions. This rule ensure that related function outputs assume that function calls with

arguments related by the precondition return values related by the post condition when analyzing

mutually recursive functions.

Finally, we need inference rules dealing with quantifier events. This definition uses only inductive

inference rules to eliminate quantifier events. We made this choice to avoid certain peculiar issues

related to ITree specifications that consist of infinite trees of only quantifiers. Given coinductive

constructors for quantifier events, we would be able to prove that such ITree specifications both

refine and are refined by any other arbitrary ITree specification. That choice would cause certain

ITree specifications to serve as both the top and bottom elements of the refinement order. This

would serve as a counterexample to the transitivity of refinement, a desired property. The choice to
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only use inductive rules for quantifier events ensures that ITree specifications that consist of infinite

trees of only quantifiers cannot be related by refinement to any other ITree specifications.

Quantifiers on the right get directly translated into Coq level quantifiers by forallr and existsr.

Quantifiers on the left get translated into their dual quantifier at the Coq level. Eliminating a Spec_∀

on the left gives you an ∃, enforced by foralll. Eliminating a Spec_∃ on the left gives you a ∀,

enforced by existsr.

5.4.2. Padded ITrees

Useful refinement relations should respect the eutt relation. When using ITrees as a denotational

semantics, eutt is the basis of any program equivalence relation. Equivalent programs and specifi-

cations should not be observationally different according to the refinement relation. However, the

refines relation does not respect eutt.

We can easily demonstrate this with the following three ITree specifications.
CoFixpoint spin : itree_spec E R := Tau spin.
CoFixpoint phi1 : itree_spec E R := Vis (Spec_∀ t) (fun _ ⇒ Tau (phi1)).
CoFixpoint phi2 : itree_spec E R := Vis (Spec_∀ t) (fun _ ⇒ phi2).

The spin specification represents a silently diverging computation. The phi1 specification is an

infinite stream that alternates between Spec_∀ nodes and Tau constructors. The phi2 specification

is a similar ITree to phi1 that just lacks the Tau nodes. As these ITree specifications all diverge

along all paths and lack any Spec_vis nodes, the RPre, RPost, and RR relations that we choose do not

matter. Given any choice for those relations, spin refines phi1 as we can use the inductive refines_∀L

rule to get rid of the Spec_∀ nodes, allowing us to match Tau nodes on both trees and apply the

coinductive refines_Tau rule. This process can be extended coinductively allowing us to construct

the refinement proof. The phi1 ITree specification is eutt to phi2, as the only difference between

the specifications is a single Tau node after every Vis_∀ node. However, spin does not refine phi2, as

there is no coinductive constructor that we can apply in order to write a proof for these divergent

ITree specifications. Problems like this arise with any ITree specifications that consist of infinitely

many quantifier nodes with nothing between them.
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[paddedret]
padded (ret r)
−−−−−−−−−−−−−−− [paddedtau]

padded t

padded (Tau t)
================

[paddedvis]
∀a, padded (k a)

padded Vis e (λa.Tau (k a))
============================

Figure 5.10: padded Definition

Class CoveredType (A : Type) := {
encoding : type; surjection : response_type encoding → A;
surjection_correct : ∀a : A, ∃x, surjection x = a; }.

Definition ∀_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_∀ encoding)

(fun x ⇒ Ret (surjection x)).

Definition assume_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
∀_spec P;; Ret tt.

Definition ∃_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_∃ encoding)

(fun x ⇒ Ret (surjection x)).

Definition assert_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
∃_spec P;; Ret tt.

Figure 5.11: Basic Specifications

To fix this problem, we restrict our focus to a subset of ITrees that does not include ones like phi2.

This is the set of padded ITrees, in which every Vis node must be immediately followed by a Tau.

We formalize this with the coinductive padded predicate, whose definition is presented in Figure 5.10.

The refinement relation does not distinguish between different ITree specifications that are eutt to

one another as long as they are padded. This means that can rewrite one ITree specification into

another under a refinement according to eutt as long as both are padded.

Furthermore, it is easy to take an arbitrary ITree, and turn it into a padded ITree. That is

implemented by the pad function, which corecursively adds a Tau after every Vis node. From

here, we can focus primarily on the following definition of padded_refines which pads out all ITree

specifications before passing them to the refines relation.

Definition 27 (Padded Refinement). Given: a precondition relation, RPre; a postcondition relation,
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CoFixpoint interp_mrec_spec {R : Type}
(bodies : ∀(d:D), (itree_spec (D + E)) (response_type d))
(t : itree_spec (D + E) R) : itree_spec E R :=
match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec_spec bodies t)
| Vis (Spec_∀ A) k ⇒ Vis (@Spec_∀ E _ A) (fun x : response_type (Spec_∀ A) ⇒ interp_mrec_spec

bodies (k x))
| Vis (Spec_∃ A) k ⇒ Vis (@Spec_∃ E _ A) (fun x ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_vis (inr e)) k ⇒ Vis (Spec_vis e) (fun x ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_vis (inl d)) k ⇒ Tau (interp_mrec_spec bodies (bind (bodies d) k))
end.

Definition mrec_spec (bodies : ∀(d:D), (itree_spec (D + E)) (response_type d)) (init : D) :=
interp_mrec_spec bodies (bodies init).

Figure 5.12: mrec_spec Definition

RPost; a return relation, RR; and two specifications, phi1 and phi2; the specifications phi1 and

phi2 are contained in the relation padded_refines RPre RPost RR if and only if RPre; RPost ⊢

pad phi1 ⊑RR pad phi2. We write the padded refinement relation as RPre; RPost ⊢p phi1 ⊑RR phi2.

In Figure 5.11, we introduce several simple ITree specifications that implement quantification over

some types, and assumption and assertion of propositions. The ∀_spec and ∃_spec specifications

rely on the CoveredType type class. A CoveredType instance for a type A contains an element of the

restricted type grammar, encoding, whose interpretation corresponds to A. It also contains a valid

surjection from the interpreted type response_type encoding to the original type A. In practice, we

always instantiate this surjection with the identity function, but this type class formalization gives

us the tools that we need without needing to do too much dependently typed programming. We

can use ∀_spec and ∃_spec to define assumption and assertion, respectively, as Prop is part of the

restricted grammar of types that SpecEvent can quantify over.

5.4.3. Padded Refinement Meta Theory

This subsection introduces some of the useful, verified metatheory we provide for ITree specifications in

terms of padded_refines relation.

We prove that we can compose refinement results with the monadic bind operator.
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Inductive RComposePostRel
(R1 : Rel D1 D2) (R2 : Rel D2 D3) (PR1 : PostRel D1 D2) (PR2 : PostRel D2 D3) :
PostRel D1 D3 :=
| RComposePostRel_intros (d1 : D1) (d3 : D3)

(a : response_type d1) (c : response_type d3) :
(∀ (d2 : D2), R1 d1 d2 → R2 d2 d3 →
∃ b, PR1 d1 d2 a b ∧ PR2 d2 d3 b c) →
RComposePostRel R1 R2 PR1 PR2 d1 d3 a c.

Figure 5.13: Post relation composition

Theorem 26 (Padded Refinement Respects Bind). If RPre; RPost ⊢p phi1 ⊑RR phi2 and given any

r1 and r2 contained in RR, RPre; RPost ⊢p kphi1 r1 ⊑RS kphi2 r2,

then RPre; RPost ⊢p bind phi1 kphi1 ⊑RS bind phi2 kphi2.

We prove that the padded_refines relation is transitive. To state the transitivity result in full

generality, we need a PostRel relational composition operator. This operator is defined in Figure 5.13.

In addition to taking two post condition relations to compose, it relies on two precondition relations

known as coordinating relations. An coordinating event between d1 : D1 and d3 : D2 is any event

d2 : D2 which is related to d1 by the first coordinating relation and is related to d3 by the second.

To relate a four tuple d1 : D1, d3 : D3, a : response_type d1, and c : response_type d3, we need to

prove that for any coordinating event d2, there exists some coordinating answer b : response_type d2

such that the first post condition relates d1,d2,a,b and the second post condition relates d2,d3,b,c.

Theorem 27 (Transitivity of Padded Refinement). If RPre1; RPost1 ⊢p phi1 ⊑RR1 phi2 and

RPre2; RPost2 ⊢p phi2 ⊑RR2 phi3, then

RPre1 ◦ RPre2; RComposePostRel RPre1 RPre2 RPost1 RPost2 ⊢p phi1 ⊑RR1 ◦ RR2 phi3.

We prove a reasoning principle for mutually recursive specifications as well. To do this, we first

provide a slightly different definition of mutual recursion that handles the quantifier events correctly,

defined in Figure 5.12. The key to proving refinements between mrec_spec specifications is to use

the PreRel and PostRel relations to establish pre- and post- conditions on recursive calls. This

involves choosing a PreRel over recursive call events, RPreInv, and a PostRel over recursive call events,

RPostInv. Just like any form of invariants in formal verification, correctly choosing RPreInv and

RPostInv requires striking a careful balance between choosing preconditions that are weak enough to
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[concreteret]
concrete (ret r)
−−−−−−−−−−−−−−−−−− [concretetau]

concrete t

concrete (Tau t)
==================

[concretevis]
∀a, concrete (k a)

concrete (Vis (Spec_vis e) k)
===============================

Figure 5.14: concrete Definition

hold, but strong enough to imply post conditions.

Theorem 28 (Padded Refinement Respects MRec). If recursive call events i1 and i2 are contained

in the precondition invariant RPreInv, and given any recursive call events, d1 and d2, contained

in RPreInv, SumRel RPreInv RPre; SumPostRel RPostInv RPost ⊢p bodies1 d1 ⊑RPostInv d1 d2

bodies2 d2, then

RPre; RPost ⊢p mrec_spec bodies1 i1 ⊑RPostInv i1 i2 mrec_spec bodies2 i2.

The hypotheses in this theorem state that the initial recursive calls, init1 and init2, are in the

precondition RPreInv, and that given any two recursive calls related by the precondition, d1 and d2,

the recursive function bodies refine one another, where recursive calls are related by RPreInv and

RPostInv and any other events are related by RPre and RPost. These reasoning principles allow us

to prove complicated propositions involving the coinductively defined refinement relation without

needing to perform direct coinduction.

While we include several parameter relations with the definition of padded_refines, at the top level,

we are typically interested in the case where all relations are set to equality.

Definition 28 (Strict Refinement). Specification phi1 strictly refines specification phi2 if and only

if eq; PostRelEq ⊢p phi1 ⊑eq phi2. In this case, we write phi1 ≤ phi2.

As a corollary of Theorem 27, strict refinement is a transitive relation, and is strong enough to allow

rewrites under the context of any other application of padded_refines.
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5.4.4. Interaction Tree Specification Incompleteness

One way to interpret ITree specifications is as sets of ITrees. Figure 5.14 defines a predicate of concrete

ITree specifications, which correspond to executable ITrees. A concrete ITree specification contains

no quantifiers along any of its branches. We can map each ITree specification to the set of concrete

ITree specifications that refine it.

However, ITree specifications are not complete with respect to this interpretation. In particular,

there are pairs of ITree specifications that represent equivalent sets of concrete ITree specifications,

but do not refine one another. To see why, consider the following two ITree specification over an

empty event signature voidE.

Definition top1 : itree_spec voidE unit :=
∀_spec void;; Ret tt.

Definition top2 : itree_spec voidE unit :=
or_spec spin (Ret tt).

Both top1 and top2 are refined by all concrete ITree specifications of type itree_spec voidE unit.

We can prove the refinement for top1 by applying the right ∀ rule, and reducing to a trivially satisfied

proposition. For top2, we know that every concrete ITree specification of this type is eutt to either

spin or Ret tt6. In each case, apply the right ∃ rule and choose the corresponding branch. However,

given any relations RPre, RPost, RR, we cannot prove padded_refines RPre RPost RR top1 top2. This

is because the only way to eliminate the Spec_∀ on the left is to provide an element of the void type,

which does not exist. This, along with the transitivity theorem, demonstrates that padded_refines is

strictly weaker than the subset relation on sets of refining concrete ITree specification.

5.5. Total Correctness Specifications

This section discusses how to encode and prove simple pre- and post- condition specifications using

ITree specifications. We also discuss how these definitions relate to our syntax-directed proof

automation.
6Proving this fact requires a nonconstructive axiom like the Law of The Excluded Middle.
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Definition call_spec (a : A) : itree_spec (callE A B + E) B := trigger (inl (Call a)).

Definition calling’ {F} {̀EncodingType F} : (A → itree F B) →
(∀ (c : callE A B) , itree F (response_type c)) :=
fun f c ⇒ f (unCall c).

Definition rec_spec (body : A → itree_spec (callE A B + E) B) (a : A) :
itree_spec E B :=
mrec_spec (calling’ body) (Call a).
Definition rec_fix_spec

(body : (A → itree_spec (callE A B + E) B) → A →
itree_spec (callE A B + E) B) :

A → itree_spec E B :=
rec_spec (body call_spec).

Figure 5.15: rec_fix_spec Definition

Suppose we have a program that takes in values of type A and returns values of type B. Suppose we

want to prove that if given an input that satisfies a precondition Pre : A → Prop, it will return a

value that satisfies a postcondition Post : A → B → Prop without triggering any other events. The

postcondition is a relation over A and B to allow the postcondition to depend on the initial provided

value. We can encode these conditions in the following ITree specification.
Definition total_spec : A → itree_spec E B :=
fun a ⇒ assume_spec (Pre a);;

b � ∃_spec B;;
assert_spec (Post a b);;
Ret b.

The specification assumes that the input satisfies the precondition, existentially introduces an output

value, asserts the post condition holds, and finally returns the output.

The total_spec specification can be effectively used compositionally. Consider a merge sort imple-

mentation, named sort, built on top of two recursively defined helper functions, one for splitting a

list in half, named halve, and one for merging sorted lists, named merge. If we have already proven

specializations of total_spec for these sub functions, it becomes easier to prove a specification for

sort. Immediately we can replace these sub functions with their total correctness specifications. Now

consider how this total correctness specification will behave on the left side of a refinement. First,

we can eliminate assume_spec (Pre a) as long as we can prove Pre a. Once we have done that, we

get to universally introduce the output b, along with a proof that it satisfies the post condition. We

are finally left with only Ret b with the assumption Post a b. This is a much simpler specification
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than our initial executable specification, which relied on several control flow operators including a

recursive one.

However, this easy to use specification is not easy to directly prove. The padded_refines_mrec rule

gives us a sound reasoning principle for proving that a recursively defined function refines another

recursively defined function, but it does not give any direct insight into how to prove any refinement

that does not match that syntactic structure. To address this, we introduce a recursively defined

version of total_spec_fix that we can apply our recursive reasoning principle on.

First, we introduce a specialization of the mrec_spec combinator called rec_fix_spec, defined in

Figure 5.15. The rec_fix_spec function has a type similar to that of a standard fixpoint operator.

The first argument, body, is a function that takes in a type of recursive calls

A → itree_spec (callE A B + E) B and an initial argument of type A and produces a result in terms

of an ITree specification. It relies on the calling’ function to transform this value into a value of

type ∀ (c:callE A B), itree_spec (callE A B + E) B which the mrec_spec function requires. From

there it relies on the call_spec and rec_spec functions to wrap values of type A into Call events

and trigger them. Given this recursion operator, we introduce an equivalent version of the total

correctness specification, total_spec_fix.
Definition total_spec_fix : A → itree_spec E B :=
rec_fix_spec (fun rec a ⇒

assume_spec (Pre a);;
n � ∃_spec nat;;
trepeat n (

a’ � ∃_spec A;;
assert_spec (Pre a’ ∧ Rdec a’ a);;
rec a’

);;
b � ∃_spec B;;
assert_spec (Post a b);;
Ret b).

This specification is reliant on the trepeat n t function, with simply binds an ITree, t, onto the

end of itself n times. Note that total_spec_fix is defined recursively, and contains the elements of

total_spec inside the recursive body. This makes it easier to relate to recursively defined functions.

It begins by assuming the precondition and ends by introducing an output, asserting it satisfies

the post condition, and returning the output. What comes between these familiar parts requires
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more explanation. Recall the discussion of the padded_refines_mrec rule. This reasoning principle

lets you prove refinement between two recursively defined ITree specifications when a single layer of

unfolding of each specification matches up one to one with recursive calls.

This means that to have a useful, general, and recursively defined version of total correctness

specification we need to allow our recursive definition for total correctness specification to choose

the number of recursive calls the function requires. For this reason, total_spec_fix existentially

introduces a number n that specifies how many recursive calls are needed for one level of unfolding

of the recursive function starting at a. The specification then includes n copies of a specification

that existentially chooses a new argument a’, asserts a predicate holds on it, and then recursively

calls the specification on this new argument. This asserted predicate contains two parts. First, we

assert the precondition. A correct recursively defined function should not call itself on an invalid

input if given a valid input. Second, we assert that a’ is less than a according to the relation Rdec.

In order for total_spec_fix to actually be equivalent to total_spec, we need to assume that Rdec is

well-founded7. The fact that Rdec is well-founded ensures that this specification contains no infinite

chains of recursive calls. This allows us to prove that total_spec_fix refines total_spec as long as

Rdec is well-founded.

Theorem 29 (Total Spec Fix Correctness). If Rdec is a well-founded relation, then

total_spec_fix Pre Post Rdec a strictly refines total_spec Pre Post a.

This theorem allows us to initially prove refinement specifications for recursive functions using

the padded_refines_mrec rule with total_spec_fix and then replace it with the easier to work with

total_spec.

Both total_spec and total_spec_fix do not accept any ITree specifications that trigger any events.

As a result, these total correctness specifications do not allow any exceptions to be raised, as you

would expect with total correctness specifications.
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Definition merge : (list nat * list nat) →
itree_spec E (list nat) :=

rec_fix_spec (fun rec ’(l1,l2) ⇒
b1 � is_nil l1;;
b2 � is_nil l2;;
if b1 : bool then
Ret l2

else if b2 : bool then
Ret l1

else
x � head l1;;
tx � tail l1;;
y � head l2;;
ty � tail l2;;
if Nat.leb x y then
l � rec (tx, y::ty);;
Ret (x :: l)

else
l � rec (x::tx, ty);;
Ret (y::l)).

Definition merge_pre p :=
let ’(l1,l2) := p in
sorted l1 ∧ sorted l2.

Definition merge_post ’(l1,l2) l :=
sorted l ∧ Permutation l (l1 ++ l2).

Definition rdec_merge ’(l1,l2) ’(l3,l4) :=
length l1 < length l3 ∧
length l2 = length l4 ∨

length l1 = length l3 ∧
length l2 < length l4.

Theorem merge_correct : ∀l1 l2,
merge (l1,l2) ≤ total_spec merge_pre

merge_post (l1,l2).

Figure 5.16: Merge implementation

5.5.1. Demonstration

To demonstrate how to work with total_spec, we describe how to verify the merge function, a key

component of the merge sort algorithm. The merge function takes two sorted lists and combines

them into one larger sorted list which contains all the original elements. In Figure 5.16, we present a

recursively defined implementation of merge along with relevant relations and the correctness theorem.

The merge function is based on the standard list manipulating functions is_nil, head, and tail. We

assume that the event type E contains some kind of error event which is emitted if head or tail is

called on an empty list.8

The merge function relies on its arguments being sorted and guarantees that its output is a single,

sorted list that is a permutation of the concatenation of the original lists. We formalize these

conditions in merge_pre and merge_post. To prove that merge is correct, we want to show that

it refines the total specification built from its pre- and post- conditions. To accomplish this, it

suffices to choose a well founded relation and prove that merge satisfies the resulting total_spec_fix

specification. For this function, we use rdec_merge which ensures that the pairs of lists that we
7We use the Coq standard library’s definition of well-foundedness for this.
8We manage this assumption with the ReSum typeclass. This typeclass is discussed conceptually in Chapter 2 and

the code of this particular implementation is provided in Appendix A.

116



recursively call merge on either both decrease in length, or one decreases in length and the other has

the same length.

This leaves us with a refinement goal between two recursively defined specifications. We can then

apply the padded_refines_mrec_spec theorem. For the relational precondition, we require that each

pair of Call events is equal, and that Pre holds on the value contained within the call. For the

relational postcondition, we require that equal Call events return equal values and that Post holds

on them. Finally, we can prove that the body merge refines the body of total_spec_fix given these

relation pre- and postconditions. We accomplish this by setting the existential variables on the right

to make a single recursive call and give it the same argument as the recursive call that the body of

merge makes.

With this technique, we can verify the simple server introduced in Section 5.1. Recall that the

server_impl program executes an infinite loop of receiving a list of numbers, sorting it, and sending

it back as a message. To verify server_impl, we first verify halve, the remaining sub function of sort,

using the same technique we used to prove the correctness of merge. We can then use these facts to

prove the correctness of sort, and use the correctness of sort to prove the correctness of server_impl.

Theorem 30 (Server Correctness). server_impl tt strictly refines server_spec tt.

5.6. Automation and Evaluation

5.6.1. Auto-active Verification

A key goal of this work is to provide auto-active automation for ITree specifications refinement. To

this effect, the current section presents an automated Coq tactic for proving refinement goals called

prove_refinement. The prove_refinement tactic is designed to reduce proof goals about refinement

of programs to proof goals about the data and assertions used in those programs. In the spirit of

auto-active verification, this is done mostly automatically, but with the user guiding the automation

in places where human insight is needed.

The prove_refinement tactic defers to the user in two specific places. The first is in defining invariants
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for uses of the mrec recursive function combinator. The tool defers to the user to provide these

invariants because inferring such invariants is undecidable. The second place where prove_refinement

defers to the user is in proving non-refinement goals regarding first order data. The user can then

apply other automated and/or manual proof techniques for the theories of the resulting proof goals.

The prove_refinement tactic is defined using a collection of syntax-directed inference rules for proving

refinement goals. The tactic proves refinement goals by iteratively choosing and applying a rule that

matches the current goal and then proceeding to prove the antecedents. The prove_refinement tactic

implements this strategy using the Coq hint database mechanism, which is already a user-extensible

mechanism for proof automation using syntax-directed rules.

Further implementation details are provided in the artifact. It is important to keep in mind that

we do not claim the implementation of the prove_refinement tactic is novel or interesting. What is

novel and interesting is that ITree specifications are designed in such a way that the straightforward

implementation is able to achieve impressive results.

5.6.2. Evaluation

He et al. (2021) discussed using Heapster to verify the interface of mbox, a key datastructure in

the implementation of the Encapsulating Security Payload (ESP) protocol of IPSec. This section

extends this discussion by using ITree specifications to write and verify specifications the functional

specifications produced by Heapster. It also compares the task of verifying one example function

using Heapster and ITree specifications with the task of verifying the same function using the VST

separation logic (Appel, 2011). It also presents a table with all the mbox functions verified with

Heapster and ITree specifications along with a coarse measurement of the effort involved in the

verification.

5.6.2.1 Data Representation

The mbox datastructure, whose type is presented in Figure 5.17a, represents a data packet as a linked

list of buffers. Each buffer is a segment of a 128 element array of unsigned 8-bit integers. The buffer

consists of len integers starting at the index start in the array, data.
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typedef struct mbox_c {
size_t start;
size_t len;
struct mbox_c *next;
uint8_t data [128];

} mbox_c;

(a) mbox type in C

Definition mbox_coq :=
list (int64 *

int64 *
vector 128 uint8).

Fixpoint mbox_vst
(m : mbox_coq) (p : ptr) :=
match m with
| [] ⇒ p = NULL ∧ emp
| (x,y,v) :: m ⇒
∃ p’, p 7→ (x,y,p’,v)

* mbox_vst p’ m
end.

(b) mbox representation invariant in VST

mbox_heapster = µ X.
(ptr(W,0) 7→ int64 *
ptr(W,8) 7→ int64 *
ptr(W,16) 7→ X *
array(W,24,128, uint8 ))

∨ eq(NULL)

(c) mbox type in Heapster

Figure 5.17: mbox representation information

He et al. (2021) type checked and extracted functional specifications for several functions that

manipulate mbox. Using ITree specifications, we specified and verified the behavior of these functional

specifications using our auto-active verification tool. These functions are nontrivial, combining loops,

recursion, and pointer manipulations.

The functional specification extraction relied heavily on the Heapster type for mbox presented in

Figure 5.17c, mbox_heapster. This recursively defined type defines the memory layout of a valid

mbox on the heap. The mbox_heapster type accepts pointers that either point to a pair of 64-bit

integers, a 128 element array of unisgned 8-bit integers, and another mbox_heapster pointer, or are

null. Pointer structures that satisfy this heapster type represent the same information as contained

in the mbox_coq type presented in Figure 5.17b. The mbox_coq type is the type of lists of tuples

which contain two 64-bit integers and a 128 element vector of unsigned 8-bit integers.

A state-of-the-art technique to verify this code is in a separation logic like VST (Appel, 2011).

Separation logics like VST provide tools for reasoning about disjoint segments of the heap, like

119



mbox_len_vst :=
DECLARE mbox_len_c
WITH (p : ptr), (m1 : mbox_coq)
PRE

PARAMS (p)
SEP (mbox_rep m1 p)
PROP (⊤)

POST
∃ (x : int64) (m2 : mbox),
RETURN (x)
SEP (mbox_rep m2 p)
PROP (x = mbox_len_coq m1

∧ m1 = m2)

(a) VST specification for mbox_len_c

mbox_len_heapster :=
(m : mbox_heapster) ⊸
(m : mbox_heapster )*
(ret : int64)

Definition mbox_len_itree_spec
:= total_spec top

(fun m1 (m2,x) ⇒
x = mbox_len_coq m1
∧ m1 = m2).

(b) Heapster type and ITree specification for
mbox_len_c

Figure 5.18: Reasoning about mbox_len_c

the separating conjunction operator *. These tools can be used to define representation invariants,

predicates that express that the information in a particular segment of the heap represents some

abstract datastructure. The mbox_vst heap predicate, presented in Figure 5.17b, is a representation

invariants for the mbox datastructure written in the VST separation logic. The heap predicate,

mbox_vst m p, asserts that the heap segment pointed to by pointer p represent the mbox_coq value

m. An empty list mbox is represented by the null pointer. An mbox with data at its head, (x,y,v)::m

is represent by a pointer p which points to a segment of data containing 64-bit integers x and y, a

pointer p’ that represents the mbox, m, and a 128 element vector of unsigned 8-bit integers, v.

This heap predicate is recursively defined and closely resembles the Heapster type for mbox. The

primary difference, beyond syntax, is that mbox_vst predicate ensures that a pointer structure

represents a particular mbox m, while mbox_heapster ensures that a pointer structure represents

some mbox. This difference is due to the fact that Heapster types are used solely to reason about

memory safety. These types are not present in the functionality reasoning steps where the particular

mbox matters.

5.6.2.2 Example Program

Consider the mbox_len_c function presented in the following code.
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size_t mbox_len_c(const mbox *m) {

// Add up the cumulative lengths of the mbox chain

size_t total = 0;

while (m != NULL) {

total += m->len;

m = m->next;

}

return total;

}

This function takes in a pointer to an mbox, loops through it, and returns the total sum of the

lengths of each buffer. The function also leaves its input unchanged, neither mutating any of the

data values nor deallocating any of the memory. The behavior of this heap-manipulating C code is

equivalent to the following Coq code, which sums up the lengths of each buffer in an mbox using a

functional list fold.

Definition mbox_len_coq m := fold add (map (fun (x,y,z) ⇒ y) m) 0.

With the Heapster-ITree specification pipeline, the specification of this behavior is split into two parts.

First, the function is assigned the Heapster type, mbox_len_heapster presented in Figure 5.18b.

This type ensures that the mbox_len_c function takes in a valid mbox, returns a 64-bit integer, and

leaves a valid mbox in the location of the input. The typing derivation that proves that mbox_len_c

has type mbox_len_heapster is then used to automatically construct a functional specification.

Finally, we prove that the functional specification has the desired behavior, ensured by the fact that

it refines the mbox_len_itree_spec specification also presented in Figure 5.18b. This specification

states that given an arbitrary input, the function returns the length of the input, as defined by

mbox_len_coq, and an mbox equal to the input.

To verify the same behavior with VST, we need a specification that contains the information contained

in both mbox_len_heapster and mbox_len_itree_spec. Figure 5.18a presents a streamlined version
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of the mbox_len_vst specification for mbox_len_c. The DECLARE clause determines which function

this specification is for. The WITH clause introduces variables in scope for the rest of the specification.

In this specification, it introduces a pointer, p, that is the input to the function and an mbox, m1,

that is the mbox that is represented by the data at p.

The rest of the specification is broken up into the precondition, PRE, and the postcondition, POST.

Both the precondition and postcondition contain SEP and PROP clauses. Each SEP clause lists heap

predicates which describe the layout of the heap, either before the execution of the function in the

case of the precondition, or after the execution in the case of the postcondition. This corresponds

roughly to the information contained in Heapster types. Each PROP clause lists propositions that

describe the abstract mathematical values this function is reasoning about. This corresponds roughly

to the information included in ITree specification.

The precondition also contains the PARAMS clause. The PARAMS clause declares the inputs to the

function. In this case, the pointer p is the sole input to the function. The precondition’s PROP clause

is trivial in this case.

The POST clause begins using an existential quantifier to introduce values that are needed to describe

the output. In this case, it introduces a 64-bit integer representing the returned length, and an mbox,

m2, representing the unchanged datastructure represented at p. The postcondition also contains the

RETURN clause. The RETURN clause declares the value that the function returns. In this case, it is the

integer x. The postcondition’s SEP clause guarantees that p satisfies the representation invariant for

m2. Finally, the postcondition’s PROP clause asserts that the return value, x, is equal to the length of

the input mbox, m1, and that the input and output mbox values are the same.

A major difference between these two ways to verify the behavior of mbox_len_c is that the Heapster-

ITree specifications method provides a firm separation between reasoning about the structure of the

heap and reasoning about the abstract data transformations performed by the program. While the

VST specification does split provide different SEP and PROP clauses that break up the reasoning in a

similar way, this is a shallow interface on top of a logic in which the user must reason about these
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Function Name Description C LoC Proof LoC
mbox_free_chain Deallocate an mbox chain 11 18

mbox_len Compute the length in bytes of an mbox chain 9 40
mbox_concat Concatenates an mbox chain after a single mbox 5 18

mbox_concat_chains Concatenates two mbox chains 14 24
mbox_split_at Split an mbox chain into two chains 25 147

mbox_copy Copy a single mbox 13 74
mbox_copy_chain Copy an mbox chain 18 173

mbox_detach Detach the first mbox from a chain 18 18
mbox_detach_from_end Detach the first N bytes from an mbox chain 3 50

mbox_randomize Randomize the contents of an mbox 9 121
mbox_drop Remove bytes from the start of an mbox 12 23

Figure 5.19: Verified mbox functions

concepts simultaneously.

In contrast, with Heapster and ITree specifications this conceptual separation is reified in the separate

stages of a verification pipeline. A proof engineer reasons about memory safety and heap layout

while writing the Heapster types. The Heapster tool then automatically generates a functional

specification. Finally, the proof engineer reasons separately about the behavior of the functional

specification. The ITree specifications auto-active verifier reduces this task to number of choices of

invariants and proofs of first order propositions.

Anecdotal Experience. While verifying the mbox_len_c function in VST, I found that this

separation between heap layout reasoning and functionality reasoning was a leaky abstraction.

In particular, the separation is not maintained at all when writing proofs, just when writing the

specifications. This made the proof noticeably more challenging. For C functions that can be

given a valid Heapster type, I believe verification using Heapster and ITree specifications is easier

than verification using VST. However, the Heapster type system is conservative compared to a full

separation logic like VST, so there remains C code that cannot be verified with the novel techniques

in this chapter.

5.6.2.3 Verified Functions

Figure 5.19 presents the full list of verified functions. For each function, we include the function’s

name, a description of its behavior, the number of lines of C code in its definition, and the number
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of lines of Coq code required to verify it. Lines of code are, of course, a very coarse metric for

judging the complexity of code and proofs. However, these metrics do demonstrate the viability of

this verification approach, showing that the remaining proof burden after the automation is of a

reasonable size.
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CHAPTER 6

Related Work

The work in this dissertation is part of a large and growing literature on program verification. This

chapter surveys the most closely related work, starting with modern formal verification in interactive

theorem provers. The remainder of the chapter is split into sections corresponding to work related

specifically to Chapters 3, 4, and 5 respectively.

6.1. Formal Verification in Interactive Theorem Provers

The primary purpose of this dissertation is to provide language independent formal specification tools.

In particular, it develops specification tools for the low level languages that ITrees are particularly well

suited to representing. These tools are formalized in the Coq proof assistant (Coq development team,

2023). There is also a vast body of prior work on Coq-based Proof Frameworks for program correctness.

Systems like YNot (Malecha et al., 2011), based on Hoare Type Theory, Iris (Jung et al., 2016),

VST (Appel, 2014), and FCSL (Sergey et al., 2015), all based on concurrent separation logic, and

CertiKOS (Gu et al., 2016, 2019), which uses certified abstraction layers, have had major success in

the field of large scale program verification. Those models typically rely on small-step, relationally-

specified operational semantics, and are especially useful for reasoning about concurrent programs.

There has only recently been success in modelling concurrent programs with a variant of ITree

semantics (Chappe et al., 2023). Formal verification is also commonly done in the Agda (Norell,

2007) and Isabelle/HOL (Nipkow et al., 2002) proof assistants. F⋆, a functional, general-purpose

programming language with dependent types and algebraic effects, is also commonly used for program

verification (Swamy et al., 2011).

While the literature is full of useful and powerful specification tools, most are specialized to a

particular language or system. For example, VST-Floyd (Appel, 2014) is a separation logic for C,

and CFML is a separation logic for OCaml (Charguéraud, 2011). The only work I am currently

aware of that has a goal similar to the overall dissertation is the Iris separation logic (Jung et al.,

2015). The Iris logic is both language independent and expressive enough represent a wide array
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of kinds of specifications, including noninterference (Frumin et al., 2019). Unlike this work, Iris is

focused on higher level languages, with features like arbitrary recursion, recursive types, and higher

order state.

There is other literature that falls in the intersection of ITrees and specifications. Koh et al. (2019)

uses ITrees to specify the set of acceptable observable behaviors from server code. Both Conditional

Contextual Refinement (Song et al., 2023) and DimSum (Sammler et al., 2023) extend ITrees with

quantifier events and use the resulting structure as a language of specifications.

6.2. Dijkstra Monads Forever

Work on creating logics to verify program specifications for effectful languages dates back to the 1960’s.

Foundational works like Hoare (1969), Floyd (1967) and Dijkstra (1975) provided interpretations of

programs that map postconditions to preconditions. These were originally external proof techniques

for pen and paper proofs about the behavior of algorithms.

Chapter 3 builds directly on the Dijkstra monad literature (Maillard et al., 2019; Swamy et al., 2013).

This line of research has its roots in Hoare Type Theory (Nanevski et al., 2006), which presented a

dependently typed functional programming language with mutable state and a novel Hoare type.

A Hoare Type consists of some base type A, a precondition P on the state, and a postcondition

Q on the state; it is inhabited by a computation producing an A that changes the state in a way

that satisfies the postcondition given the precondition. This formulation is equivalent to specifying

stateful computations using the state transform of the DelaySpec monad as the specification monad.

Because Hoare Type Theory provides only partial correctness guarantees, it is less expressive than

the framework presented in Chapter 3.

The Dijkstra monad framework extends the ideas of Hoare Type Theory, adding support for algebraic

effects like exceptions and IO, as well as providing a general framework for adding a new effect and

a specification monad to handle it. This is used as an underlying technology for F⋆’s verification of

effectful programs with respect to specifications that can describe their effects and not just their

return values (Swamy et al., 2011). In contrast to our DelaySpec and TraceSpec monads, previous
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Dijkstra monads work has not directly addressed non-termination. We extend this work by adding

the ability to reason fully about divergence in specifications, while retaining the ability to reason

about interactions with the environment.

6.3. Secure Interaction Trees

Goguen and Meseguer (1982) introduced noninterference to formalize confidentiality; that is, the

intuitive notion that secret data does not leak to an adversary. Volpano et al. (1996) enforce

progress-insensitive noninterference with a type system, and Volpano and Smith (1997) modify

the type system enforce progress-sensitive noninterference. These results led to a long line of

work introducing noninterference to increasingly complicated settings (e.g., Myers and Liskov, 1998;

Myers, 1999; Abadi et al., 1999; Zdancewic and Myers, 2002; Pottier and Simonet, 2003; Tsai et al.,

2007; Russo et al., 2008; Rafnsson and Sabelfeld, 2014; Algehed and Russo, 2017; Milano and Myers,

2018; Vassena et al., 2018). Proving the security of these varied type systems led to complicated

arguments for noninterference, but also gave rise to an informal library of proof techniques. The

work in Chapter 5 fits into a tradition of proof techniques for noninterference via models.

Most models view noninterference either as a trace (hyper)property or as the result of an indistin-

guishability relation. These perspectives are not mutually exclusive; we can view two programs as

indistinguishable if they produce equivalent traces. Their focus, however, can be quite different.

Trace-based models view noninterference as a 2-safety hyperproperty (Clarkson and Schneider, 2010).

That is, noninterference can be falsified using finite prefixes of two traces. Specifically, for any

interfering program there are two inputs that differ only on secrets but produce distinguishable

events after a finite number of steps.

Indistinguishability models focus more on building compositional relations. Pioneered by Abadi et al.

(1999) and Sabelfeld and Sands (2001), these models use PERs and define secure programs as those

that are self-related. Two such approaches have yielded recent notable results. First, logical-relations

techniques (Reynolds, 1983) inductively assign each type a binary relation. By constructing the

relation to reflect the security requirements of the type, logical relations can reason about informa-

tion flow control and noninterference (Vassena et al., 2019; Rajani and Garg, 2018; Gregersen et al.,
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2021). Second, bisimulation approaches directly match up program executions to define indistin-

guishability (Smith, 2003; Focardi et al., 2002).

This work straddles these methods. ITrees intuitively collect all possible traces of a program into

one infinite data structure. Our binary indistinguishability relation on ITrees is thus combining

the hyperproperty model of noninterference with the indistinguishability model. Moreover, our

indistinguishability relation is built on top of weak bisimulation. To give meaning to a type system,

we also build a small logical relation connecting types to our bisimulation arguments.

To remain practical, many languages provide only progress-insensitive guarantees (e.g., Magrino et al.,

2016; Liu et al., 2017; Volpano et al., 1996; Pottier and Simonet, 2003), despite the fact that termi-

nation channels can leak arbitrary amounts of data (Askarov et al., 2008). Techniques for enforcing

progress-sensitive guarantees (Volpano and Smith, 1997; Sabelfeld and Myers, 2003) exist, but have

seen little use. Recent work attempts to unify the two by explicitly considering termination leaks as

declassifications (Bay and Askarov, 2020). Like other models of noninterference (Gregersen et al.,

2021), seutt, defined in Section 4.4, is naturally progress-sensitive, giving a strong guarantee. Sec-

tion 4.4 also includes the progress-insensitive pi-seutt to give ITree-based semantics to more-practical

systems as well.

The reasoning principles in Chapter 4 apply to effectful languages and model effects as is standard with

ITrees. The information-flow community also studies effects deeply since they can leak information.

Traditionally, information-flow languages use a program-counter label to reason about effects, as we

saw in Section 4.5. Recent work by Hirsch and Cecchetti (2021) connects program-counter labels

with monads, giving the former semantics using the latter.

Secure compilation is a very active research area. For instance, Barthe et al. (2004) show how to

securely compile to a low-level Asm-like target language. However, they use a type system for the

target language to enforce security. Other efforts focus on particular language features, such as

cryptographic constant time (Barthe et al., 2018). Moreover, until recently, most work on secure

compilation focused on fully-abstract compilation Leroy (2009). Unfortunately, (Abate et al., 2019)
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recently showed that full abstraction is not sufficient to guarantee preservation of hyperproperties

like noninterference. Our Mixed Transitivity theorems (Theorems 12 and 18) show that equivalence-

preserving compilation does preserve noninterference.

Beyond work on secure compilation, most research on noninterference does not address multiple

interacting languages. In one notable exception, Focardi et al. (2005) examine the relationship

between a process-calculus–based notion of security and a language-based notion of security, using a

simpl imperative language similar to Imp. They translate their version of Imp into CCS and show

that they preserve Imp’s security guarantees. However, their work contains only pencil-and-paper

proofs, rather than formally verifying their translation or its security.

Finally, this work focuses on an approach for verifying language toolchains, but running any program

requires hardware. Most language-based security and verification work assumes the hardware is

predictable and reliable, but cannot enforce security. Hardware enforcement of information-security

properties (Zhang et al., 2012; Zagieboylo et al., 2019) provides dynamic enforcement of properties

like noninterference at the cost of space and power usage. Combining these mechanisms with our

approach could reduce the overhead of hardware enforcement for verified-secure programs and provide

a means to guarantee that interactions with unverified programs remain safe.

6.4. Interaction Tree Specifications

Chapter 5 builds on the work of Chapter 3, providing a second Dijkstra Monad for reasoning about

interaction trees. ITree specifications form a Dijkstra monad where the type itree_spec E R acts as

the specification monad and the corresponding ITree monad itree E R without logical quantifier

events forms the computation monad. The effect observation homomorphism is then the natural

embedding from the ITree type without quantifiers to the ITree specification type with quantifiers.

Most Dijkstra monads are specialized to act as either partial specification logics, which always

accept any nonterminating computations, or total specification logics, which always reject any

nonterminating computations. This means that most existing Dijkstra monads cannot reason about

termination-sensitive properties like liveness. ITree specifications have the advantage of admitting

specifications that accept particular divergent computations and not others. For example, an
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ITree specification could accept any computation that produces an infinite pattern of messages and

responses from a server, and reject any computation that silently diverges.

Chapter 3 and Chapter 5 both provide a Dijkstra monad for ITrees that is expressive enough to reason

about termination-sensitive properties. Both Dijkstra monads are capable of expressing specifications

that allow for specifying infinite behavior. However, Chapter 3 does not provide reasoning principles

for general recursion. The fact that ITree specifications represent specifications as ITrees enabled the

creation of elegant reasoning principles for recursion. It also enabled to creation of an auto-active

verification tool to greatly reduce the effort in writing proofs of specification refinement.

The ultimate goal of Chapter 5 is to provide techniques for auto-active verification of imperative

code. Therefore, it is natural to compare this work to semi-automated separation logic tools like

VST-Floyd (Appel, 2014) and CFML (Charguéraud, 2011). We argue this approach has two major

advantages over these related techniques. First, while VST-Floyd is specialized to C and CFML is

specialized to OCaml, ITree specifications can be used to specify any programs with an ITrees based

semantics. When paired with Heapster techniques (He et al., 2021), ITree specifications can be used

to specify a wide array of imperative, heap-manipulating languages with a memory-safe type system.

In particular, the Heapster type system is closely related to the Rust type system, meaning these

techniques should be adaptable to specify and verify Rust code. Second, the Heapster types are

able to perform all the pointer manipulation and heap layout specific reasoning, freeing the verifier

to focus on the underlying mathematical structures. In separation logics like VST, proof engineers

can invent a functional specification, prove it correct with respect to the original program, and

then reason further about the functional specification. Heapster generates functional specifications

automatically from Heapster typing derivations. This enables a verification pipeline where reasoning

about memory safety can be fully separated from reasoning about functional correctness. However,

this automation comes at a cost in the form of lessened expressiveness. The Heapster type system

is conservative and will reject some programs whose behavior could be verified in a full separation

logic like VST.

The primary innovation of Chapter 5 is to turn ITrees into a specification language by adding
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quantifier events. Similar ideas were independently developed in Song et al. (2023) and Sammler et al.

(2023). In Sammler et al. (2023), ITrees with quantifiers are used to denote and specify programs

with multilanguage features, i.e. linking code from two different languages. In Song et al. (2023),

ITrees with quantifiers are used to model programs and specifications in a framework designed

to have the common benefits of both refinement-based and separation logic-based specification

frameworks. Common to both of these works is using ITrees to model modules, separately defined

pieces of code that communicate through external calls. Both use events to model inter-module

communication. One major distinction between this line of work and other ITrees work is precisely

how ITrees are used to model computation. In most ITrees work, a program’s control flow is made

explicit with ITree combinators, and events are given semantics using handlers and interpretation,

as described in Chapter 2. These papers give semantics to all events, quantifier or otherwise,

with a novel simulation relation, reasoning about ITrees as a form of labelled transition system.

The ITrees are then reasoned about in terms of a trace semantics. This approach has produced

impressive results, but these kinds of ITrees semantics miss out on some common advantages of the

ITrees approach that the work in this dissertation retains. The semantics in Song et al. (2023) and

Sammler et al. (2023) are not executable even when they lack any quantifier events. This prevents

such semantics from being used as a reference implementation, or from being tested with testing

tools like QuickChick (Lampropoulos and Pierce, 2018; Lampropoulos et al., 2018). This approach

is also too separate from other ITree work to take full advantage of it. For example, Chapter 5 makes

heavy use of a recursion operator adapted from earlier ITrees work (Xia et al., 2020). As such, this

chapter benefitted greatly from previous ITrees work which used this operator, and contributed to

the body of work by showing how to reason about that operator. Recursion in Song et al. (2023)

and Sammler et al. (2023) is novel to that work, and cannot be easily compared to recursion in

previous ITrees work.
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CHAPTER 7

Conclusion

7.1. Contributions

This dissertation presents reusable, language independent tools for different calls of specifications

over programs with ITree semantics. Each tool leverages the flexibility of ITrees semantics to make

sure that work can be reused across different programming languages. These tools are presented and

discussed in Chapters 3, 4, and 5.

Dijkstra Monads Forever. Chapter 3 presents techniques for creating algebraic-effect aware

specifications for programming languages that use ITree semantics. These techniques adapted the

Dijkstra monad (Swamy et al., 2013; Ahman et al., 2017) techniques by providing a specification

monad for ITrees. Chapter 3 also provides example specifications that can be represented in these

specification monads.

Semantics for Noninterference with Interaction Trees. Chapter 4 presents termination

sensitive and insensitive indistinguishability relations for ITrees. These relations enable reasoning

about information flow in programming languages that use ITree semantics. Chapter 4 also shows

how to use these relations to reason about a noninterference type system in a simple language with

inlined assembly code.

Interaction Tree Specifications. Chapter 5 augments ITrees with logical quantifiers to serve as a

language of specifications for ITrees. Chapter 5 also presents verified metatheory for reasoning about

specification refinement along with an auto-active tool for proving specification refinement. The

chapter also demonstrates how to use ITree specifications with the Heapster (He et al., 2021) tool to

verify real C programs. This demonstration includes a comparison between verifying a particular

example program with Heapster types and ITree specifications and verifying the same program in

the VST separation logic (Appel, 2011).
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7.2. Future Work

7.2.1. Dijkstra Monads Forever

Maillard et al. (2020) extends the Dijkstra Monad framework from dealing strictly with unary

programming logics to dealing with relational programming logics. This allows the formalization

of specifications that relate the behavior of two different programs assuming their inputs satisfy

some input condition. The work accomplishes this by introducing the concept of a simple relational

specification monad. Simple relational specification monads serve as the type of specifications for

computations. These techniques may be able to be used to provide a useful relational program logic

for ITrees.

In Chapter 3, the Dijkstra monad for ITrees is shown to be a valid and expressive domain for writing

and verifying specifications. However, it remains unclear how effective this tool is for reducing

the burden of verification of computations written with ITrees. Further research could investigate

creating further tooling, for example a library of proof tactics, that utilizes the structure of Dijkstra

monads to simplify this kind of reasoning. Investigating the tooling underlying the F⋆ (Swamy et al.,

2011) programming language could be particularly useful, as this language uses Dijkstra monads

along with refinement types to produce verified code.

Semantics for Noninterference with Interaction Trees.

Future work could investigate generalizations of the indistinguishability relations presented in this

paper that are heterogeneous in the event type signature, more like rutt than eutt. This added

flexibility would allow the formalization of reasoning principles for indistinguishability over mutually

recursively defined computations, computed with the mrec combinator. This could enable reasoning

about programming languages with mutually recursively defined functions.

Future work can also further investigate noninterference and interpretation, already partially discussed

in Section 4.4.4. This section restricted attention to state. Using insights from Yoon et al. (2022),

which presents monadic interpreters which generalize the interp function over ITrees, researchers
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may be able to create sound conditions for ensuring that handlers respect interpretation. That

is, ensuring that handlers take indistinguishable source computations to indistinguishable target

computations.

Interaction Tree Specifications.

Chappe et al. (2022) presented a variant of Interaction Trees designed to represent nondeterministi-

cally branching computations called Choice Trees. They accomplish this by adding a new constructor

to ITrees that is analogous to an existential choice operator. Future work could investigate the

connections between Choice Trees and ITree specifications, and answer the question of whether

either subsumes the other. And if neither subsumes the other, then researchers could investigate

adapting the ITree specifications to Choice Trees. This would serve as a step towards adapting the

ITree specifications framework to concurrent programs.
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APPENDIX A

Alternate Interaction Trees Definition

Figures A.1 and A.2 presented in this appendix present a definition of ITrees where events are

represented by a single type rather than a type family, as discussed in Chapter 5. The definitions

presented in this appendix are highly similar to counterpart definitions presented in Chapter 2.

Please refer to that chapter for intuitive explanations.

135



CoInductive itree (E : Type@{a}) {̀EncodingType E} (R : Type@{a}) : Type@{a} :=
| Ret (r : R)
| Tau (t : itree E R)
| Vis (e : E) (k : response_type e → itree E R).

CoFixpoint bind (t : itree E R) (k : R → itree E S) :=
match t with
| Ret r ⇒ k r
| Tau t ⇒ Tau (bind t k)
| Vis e kvis ⇒ Vis e (fun x ⇒ bind (kvis x) k)
end.

CoFixpoint interp_mrec {R : Type}
(bodies : ∀(d:D), itree (D + E) (response_type d))
(t : itree (D + E) R) : itree E R :=
match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec bodies t)
| Vis (inr e) k ⇒ Vis e (fun x ⇒ interp_mrec bodies (k x))
| Vis (inl d) k ⇒ Tau (interp_mrec bodies (bind (bodies d) k))
end.

Definition mrec (bodies : ∀(d:D), itree (D + E) (response_type d)) (init : D) :=
interp_mrec bodies (bodies init).

Figure A.1: Alternate definitions for Interaction Trees and key operators

[EuttRet’]
RR r1 r2

eutt RR (ret r1) (ret r2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−− [EuttTau’]

eutt RR t1 t2

eutt RR (Tau t1) (Tau t2)
=============================

[EuttVis’]
∀a, eutt RR (k1 a) (k2 a)

eutt RR (Vis e k1) (Vis e k2)
================================== [EuttTauL’]

eutt RR t1 t2

eutt RR (Tau t1) t2
−−−−−−−−−−−−−−−−−−−−−−

[EuttTauR’]
eutt RR t1 t2

eutt RR t1 (Tau t2)
−−−−−−−−−−−−−−−−−−−−−−

Definition 29. Given:

• an event signature E;

• return types R1 and R2;

• and a return relation over R1 and R2, RR,

equivalence up to taus with RR, a relation between itree E R1 and itree E R2, is defined with the inference
rules presented in Figure A.2. We write this relation as eutt RR t1 t2.

Figure A.2: eutt definition for alternate Interaction Trees definition

136



Class ReSum (E1 : Type) (E2 : Type) {̀EncodingType E1} {̀EncodingType E2} :=
{
resum : E1 → E2;
resum_ret : ∀{e : E1}, response_type (resum e) → response_type e;

}.

Notation "E1 -< E2" := (ReSum E1 E2) (at level 10).

Definition trigger {E1 E2} {̀EncodingType E1} {̀EncodingType E2} {̀E1 -< E2} :
∀ (e1 : E1), (itree E2 (response_type e1)) :=
fun e ⇒ Vis (resum e) (fun x ⇒ Ret (resum_ret x)).

Figure A.3: ReSum definition for alternate Interaction Trees definition

137



BIBLIOGRAPHY

Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus of dependency.
In ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 1999. doi:
10.1145/292540.292555.

Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco Patrignani, and Jérémy
Thibault. Journey beyond full abstraction: Exploring robust property preservation for secure
compilation. In IEEE Computer Security Foundations Symposium (CSF), 2019. doi: 10.1109/
CSF.2019.00025.

Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martinez, Gordon Plotkin, Jonathan Protzenko,
Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for free. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL), 2017.

Maximilian Algehed and Alejandro Russo. Encoding dcc in haskell. In Workshop on Programming
Languages and Analysis for Security (PLAS), 2017. doi: 10.1145/3139337.3139338.

Andrew W. Appel. Verified software toolchain. In Proceedings of the 20th European Conference on
Programming Languages and Systems: Part of the Joint European Conferences on Theory and
Practice of Software, ESOP’11/ETAPS’11, pages 1–17, Berlin, Heidelberg, 2011. Springer-Verlag.
ISBN 978-3-642-19717-8. URL http://dl.acm.org/citation.cfm?id=1987211.1987212.

Andrew W. Appel. Program Logics - for Certified Compilers. Cambridge University Press, 2014. ISBN
978-1-10-704801-0. URL http://www.cambridge.org/de/academic/subjects/computer-science/
programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB.

Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong Shao, Stephanie
Weirich, and Steve Zdancewic. Position paper: the science of deep specification. Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, 375(2104), 2017. ISSN 1364-503X. doi: 10.1098/rsta.2016.0331. URL
http://rsta.royalsocietypublishing.org/content/375/2104/20160331.

Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authorization. In IEEE Computer
Security Foundations Symposium (CSF), July 2015. doi: 10.1109/CSF.2015.42.

Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive
noninterference leaks more than just a bit. In European Symposium on Research in Computer
Security (ESORICS), pages 333–348. Springer, 2008. doi: 10.1007/978-3-540-88313-5_22.

Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. Leveraging rust types
for modular specification and verification. In Proceedings of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2019.

138

http://dl.acm.org/citation.cfm?id=1987211.1987212
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://rsta.royalsocietypublishing.org/content/375/2104/20160331


Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Cătălin Hriţcu,
David Pichardie, Benjamin C. Pierce, Randy Pollack, and Andrew Tolmach. A verified information-
flow architecture. SIGPLAN Not., 49(1):165–178, January 2014. ISSN 0362-1340. doi: 10.1145/
2578855.2535839. URL https://doi.org/10.1145/2578855.2535839.

Gilles Barthe, Amitabh Basu, and Tamara Rezk. Security types preserving compilation. In Bernhard
Steffen and Giorgio Levi, editors, Verification, Model Checking, and Abstract Interpretation, pages
2–15, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-24622-0.

Gilles Barthe, Benjamin Greégoire, and Vincent Laporte. Secure compilation of side-channel coun-
termeasures: The case of cryptographic “constant time”. In IEEE Computer Security Foundations
Symposium (CSF), 2018. doi: 10.1109/CSF.2018.00031.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal of
Logical and Algebraic Methods in Programming, 84(1):108–123, January 2015.

Johan Bay and Aslan Askarov. Reconciling progress-insensitive noninterference and declassification.
In IEEE Computer Security Foundations Symposium (CSF), June 2020. doi: 10.1109/CSF49147.
2020.00015.

Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci., 375(1-3):
227–270, 2007. doi: 10.1016/j.tcs.2006.12.034. URL https://doi.org/10.1016/j.tcs.2006.12.034.

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. Vst-floyd:
A separation logic tool to verify correctness of C programs. J. Autom. Reasoning, 61(1-4):367–422,
2018. doi: 10.1007/s10817-018-9457-5. URL https://doi.org/10.1007/s10817-018-9457-5.

Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer Science,
1(2):1–18, 2005. ISSN 1860-5974. doi: 10.2168/LMCS-1(2:1)2005. URL http://www.lmcs-online.
org/ojs/viewarticle.php?id=55.

Quentin Carbonneaux, Jan Hoffmann, Thomas Reps, and Zhong Shao. Automated resource analysis
with coq proof objects. In International Conference on Computer Aided Verification, pages 64–85.
Springer, 2017.

Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. Choice
trees: Representing nondeterministic, recursive, and impure programs in coq. Nov 2022. doi:
10.1145/3571254. URL http://arxiv.org/abs/2211.06863. arXiv:2211.06863 [cs].

Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. Choice trees:
Representing nondeterministic, recursive, and impure programs in coq. Proc. ACM Program.
Lang., 7(POPL), jan 2023. doi: 10.1145/3571254. URL https://doi.org/10.1145/3571254.

Arthur Charguéraud. Characteristic formulae for the verification of imperative programs. SIGPLAN
Not., 46(9):418–430, sep 2011. ISSN 0362-1340. doi: 10.1145/2034574.2034828. URL https:

139

https://doi.org/10.1145/2578855.2535839
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1007/s10817-018-9457-5
http://www.lmcs-online.org/ojs/viewarticle.php?id=55
http://www.lmcs-online.org/ojs/viewarticle.php?id=55
http://arxiv.org/abs/2211.06863
https://doi.org/10.1145/3571254
https://doi.org/10.1145/2034574.2034828
https://doi.org/10.1145/2034574.2034828


//doi.org/10.1145/2034574.2034828.

Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman, Colm MacCárthaigh,
Stephen Magill, Eric Mertens, Eric Mullen, Serdar Tasiran, Aaron Tomb, and Eddy Westbrook.
Continuous formal verification of amazon s2n. In Proceedings of the 30th International Conference
on Computer Aided Verification (CAV), 2018.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security (JCS),
18(6):1157–1210, 2010. doi: 10.3233/JCS-2009-0393.

Thierry Coquand. An analysis of girard’s paradox. 10 1999.

Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information flow.
Commun. ACM, 20(7):504–513, jul 1977. ISSN 0001-0782. doi: 10.1145/359636.359712. URL
https://doi.org/10.1145/359636.359712.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, August 1975. ISSN 0001-0782. doi: 10.1145/360933.360975. URL
https://doi.org/10.1145/360933.360975.

Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on Applied Mathemat-
ics, 19:19–32, 1967. URL http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf.

Riccardo Focardi, Carla Piazza, and Sabina Rossi. Proof methods for bisimulation based information
flow security. In Verification, Model Checking, and Abstract Interpretation (VMCAI), 2002.

Riccardo Focardi, Sabrina Rossi, and Andrei Sabelfeld. Bridging language-based and process calculi
security. In FoSSaCS, 2005. doi: 10.1007/978-3-540-31982-5_19.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. Compositional non-interference for fine-grained
concurrent programs. CoRR, abs/1910.00905, 2019. URL http://arxiv.org/abs/1910.00905.

Joseph A. Goguen and Jose Meseguer. Security policies and security models. In IEEE Symposium
on Security and Privacy (S&P), 1982. doi: 10.1109/SP.1982.10014.

Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. Mechanized logical
relations for termination-insensitive noninterference. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi: 10.1145/3434291. URL https://doi.org/10.1145/3434291.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. Certikos: An extensible architecture for building certified concurrent
OS kernels. In 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 653–669, 2016. URL https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/gu.

140

https://doi.org/10.1145/2034574.2034828
https://doi.org/10.1145/2034574.2034828
https://doi.org/10.1145/2034574.2034828
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/360933.360975
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://arxiv.org/abs/1910.00905
https://doi.org/10.1145/3434291
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu


Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan (Newman) Wu,
Vilhelm Sjöberg, and David Costanzo. Building certified concurrent os kernels. Commun.
ACM, 62(10):89–99, September 2019. ISSN 0001-0782. doi: 10.1145/3356903. URL https:
//doi.org/10.1145/3356903.

Paul He, Edwin Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer, Andrei
Stefanescu, Aaron Tomb, Adam Wick, Matthew Yacavone, and Steve Zdancewic. A type system for
extracting functional specifications from memory-safe imperative programs. In Proceedings of the
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2021.

Andrew K. Hirsch and Ethan Cecchetti. Giving semantics to program-counter labels via secure
effects. Proceedings of the ACM on Programming Languages, 5(POPL), January 2021. doi:
10.1145/3434316.

Son Ho and Jonathan Protzenko. Aeneas: Rust verification by functional translation. Proceedings
of the ACM on Programming Languages, 6(ICFP):711–741, Aug 2022. ISSN 2475-1421. doi:
10.1145/3547647. arXiv:2206.07185 [cs].

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,
1969. doi: 10.1145/363235.363259. URL http://doi.acm.org/10.1145/363235.363259.

Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dimitrios Vytiniotis,
Arthur Azevedo de Amorim, and Leonidas Lampropoulos. Testing noninterference, quickly. In
ICFP, 2013. doi: 10.1145/2500365.2500574.

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization in
coinductive proof. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2013. doi: 10.1145/2429069.2429093.

Limin Jia and Steve Zdancewic. Encoding information flow in Aura. In Proceedings of the 2009
Workshop on Programming Languages and Analysis for Security (PLAS), pages 17–29, 2009.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and
Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), January 2015.
doi: 10.1145/2676726.2676980.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. In Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22,
2016, pages 256–269. ACM, 2016. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951943. URL
http://doi.acm.org/10.1145/2951913.2951943.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt: Securing the

141

https://doi.org/10.1145/3356903
https://doi.org/10.1145/3356903
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/2951913.2951943


foundations of the rust programming language. Proc. ACM Program. Lang., 2(POPL), December
2017. doi: 10.1145/3158154. URL https://doi.org/10.1145/3158154.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. sel4: Formal verification of an os kernel. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 207–220, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629596. URL
http://doi.acm.org/10.1145/1629575.1629596.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky,
Benjamin C. Pierce, and Steve Zdancewic. From c to interaction trees: Specifying, verifying, and
testing a networked server. In Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, 2019. doi: 10.1145/3293880.3294106.

Daniel Kästner, Ulrich Wünsche, Jörg Barrho, Marc Schlickling, Bernhard Schommer, Michael
Schmidt, Christian Ferdinand, Xavier Leroy, and Sandrine Blazy. CompCert: Practical experience
on integrating and qualifying a formally verified optimizing compiler. In ERTS 2018: Embedded
Real Time Software and Systems. SEE, January 2018. URL http://xavierleroy.org/publi/erts2018_
compcert.pdf.

Leonidas Lampropoulos and Benjamin C. Pierce. QuickChick: Property-Based Testing in Coq.
Software Foundations series, volume 4. Electronic textbook, 2018. URL https://softwarefoundations.
cis.upenn.edu/qc-current/index.html.

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. Generating good generators
for inductive relations. PACMPL, 2(POPL):45:1–45:30, 2018. doi: 10.1145/3158133. URL
http://doi.acm.org/10.1145/3158133.

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009. doi:
10.1145/1538788.1538814. URL http://doi.acm.org/10.1145/1538788.1538814.

Xavier Leroy and Sandrine Blazy. Formal verification of a c-like memory model and its uses for
verifying program transformations. J. Autom. Reason., 41(1):1–31, jul 2008. ISSN 0168-7433. doi:
10.1007/s10817-008-9099-0. URL https://doi.org/10.1007/s10817-008-9099-0.

Jed Liu, Owen Arden, Michael D. George, and Andrew C. Myers. Fabric: Building open distributed
systems securely by construction. 25(4–5):319–321, May 2017. doi: 10.3233/JCS-0559.

Tom Magrino, Jed Liu, Owen Arden, Chin Isradisaikul, and Andrew C. Myers. Jif 3.5: Java
information flow. Software release, 2016. URL https://www.cs.cornell.edu/jif.

Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and
Éric Tanter. Dijkstra monads for all. Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:
10.1145/3341708. URL https://doi.org/10.1145/3341708.

142

https://doi.org/10.1145/3158154
http://doi.acm.org/10.1145/1629575.1629596
http://xavierleroy.org/publi/erts2018_compcert.pdf
http://xavierleroy.org/publi/erts2018_compcert.pdf
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
http://doi.acm.org/10.1145/3158133
http://doi.acm.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-008-9099-0
https://www.cs.cornell.edu/jif
https://doi.org/10.1145/3341708


Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. The next 700 relational
program logics. Proceedings of the ACM on Programming Languages, 4(POPL):1–33, Jan 2020.
ISSN 2475-1421, 2475-1421. doi: 10.1145/3371072.

Gregory Malecha, Greg Morrisett, and Ryan Wisnesky. Trace-based verification of imperative
programs with i/o. J. Symb. Comput., 46(2):95–118, February 2011. ISSN 0747-7171. doi:
10.1016/j.jsc.2010.08.004. URL http://dx.doi.org/10.1016/j.jsc.2010.08.004.

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. Rusthorn: Chc-based verification for
rust programs. In Proceedings of the 29th European Symposium on Programming (ESOP), 2020.

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. Rusthornbelt: A
semantic foundation for functional verification of rust programs with unsafe code. In Proceedings
of the 43rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
2022.

Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2023. URL
http://coq.inria.fr. Version 8.17.1.

Mae P. Milano and Andrew C. Myers. MixT: A language for mixing consistency in geodistributed
transactions. In ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2018. doi: 10.1145/3192366.3192375.

Andrew C. Myers. JFlow: Practical mostly-static information flow control. In ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL), January 1999. doi: 10.1145/292540.
292561.

Andrew C. Myers and Barbara Liskov. Complete, safe information flow with decentralized labels. In
IEEE Symposium on Security and Privacy (S&P), 1998. doi: 10.1109/SECPRI.1998.674834.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and separation in hoare
type theory. SIGPLAN Not., 41(9):62–73, September 2006. ISSN 0362-1340. doi: 10.1145/1160074.
1159812. URL https://doi.org/10.1145/1160074.1159812.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002. ISBN 3-540-43376-7.

Ulf Norell. Towards a practical programming language based on dependent type theory, 2007.

Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-3):
271–307, 2007. doi: 10.1016/j.tcs.2006.12.035. URL https://doi.org/10.1016/j.tcs.2006.12.035.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
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