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ABSTRACT

INTERACTION TREES AND FORMAL SPECIFICATIONS

Lucas Silver

Stephan Zdancewic

Interaction Trees are a recently developed form of denotational semantics for effectful programs
that is executable and compositional. This dissertation uses Interaction Trees to develop reusable,
language-independent tools for different classes of specifications. First, it demonstrates how to
apply the Dijkstra monads (Swamy et al., 2013; Maillard et al., 2019) approach to Interaction Trees.
Second, it demonstrates how to analyze the information flow properties of Interaction Trees, enabling
security analysis for any programs with Interaction Tree denotations. Finally, it presents the
Interaction Tree Specification framework, a program logic for Interaction Trees that enables efficient,

syntactic automated proofs of properties of Interaction Trees.
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CHAPTER 1

Introduction

1.1. Motivation

Formal verification of software is on the rise, combining a steady stream of theoretical advances
from academic research with a growing interest in verification from industry. Notable academic
examples include: the CompCert compiler (Leroy, 2009; Késtner et al., 2018), a formally verified,
optimizing compiler from C to machine code; the VST project (Appel, 2011, 2014), a separation
logic for reasoning about C programs; and the Iris logic (Jung et al., 2015), a language independent
separation logic for higher-order, effectful programming. Notable examples from industry include:
the seld verified microkernel (Klein et al., 2009); Amazon’s verification of the s2n cryptography
library (Chudnov et al., 2018); and the Heapster project (He et al., 2021) for reasoning about

low-level heap manipulating programs.

Formal verification can provide intrinsically stronger guarantees of the correctness and safety of
software than traditionally dominant methods like testing and code reviews (Appel et al., 2017).
Even the most sophisticated testing tools can test only a finite amount of a program’s possible
inputs, while formal verification can give guarantees about all possible inputs. The utility of formal
methods was also empirically demonstrated by the CSmith project. CSmith used randomized testing
techniques to identify bugs in a collection of C compilers and failed to find any bugs in the verified
components of CompCert (Yang et al., 2011). For all of these reasons, formal verification is a

promising avenue of research.

One limitation of formal verification, however, is the lack of multilanguage verification tools. For
example, VST (Appel, 2011) and CFML (Charguéraud, 2011) are both semi-automated separation
logics, but are incompatible because VST is for C and CFML is for Caml. A major exception to
this is Iris (Jung et al., 2015), a language independent separation logic for higher-order, effectful
programming. The Iris tool chain supports defining new programming languages while automatically

instantiating powerful logics for formal verification. However, Iris is a very heavy-duty tool, and much



of its weight comes from its ability to reason about higher-order program features, like recursive,
higher-order functions. This leaves a gap in the literature for simpler tools that deal with simpler,
lower-order programming languages. This dissertation explores one path in the direction of addressing

this gap.
1.2. Formal Specifications and Formal Semantics

Formal verification relies heavily on two key, related technologies, formal semantics and formal speci-
fications. Formal semantics assign a mathematically precise meaning to programs. By formulating
the meaning of programs in terms of mathematics, we can apply the tools of mathematical proofs
to obtain high assurance guarantees about the behavior of programs. This can include guarantees
about an individual program, e.g., ensuring it computes the correct result; guarantees across an
entire programming language, e.g., ensuring well-typed programs have no undefined behavior; and
guarantees across different programming languages, e.g., ensuring that compiled programs refine the

behavior of their source programs.

Formal specifications provide a language to describe the behavior of a program or collection of
programs. A classic example of a language of formal specifications is Hoare logic (Hoare, 1969). Hoare
logic operates over Hoare triples. Hoare triples are tuples which contiain a program, a precondition,
and a postcondition. A Hoare triple is valid if, given any initial state that satisfies the precondition,
the program produces an output state that satisfies the postcondition. A closely related example is
separation logic (Reynolds, 2002; O’Hearn, 2007; Brookes, 2007). A separation logic enriches the
language of Hoare logic with the capability with the separating conjunction operator. The separating
conjunction operator enables reasoning separately about disjoint sections of the heap. Separation
logics have proven immensely useful for reasoning about memory safety and concurrency, among

many other applications (Jung et al., 2015; Cao et al., 2018; O’Hearn, 2007).

Besides program correctness, another example specification is noninterference, a condition from the
security literature. Suppose a program manipulates data with different levels of privilege, i.e., public
and private. Also suppose that observers have no way of directly reading or manipulating data that

they do not have access to. This assumption is a key component of the threat model for this security



property. A noninterfering program respects these privilege levels, preventing observers from gaining
information about data they lack the permission to access. Such programs prevent public observers

from learning private information by manipulating and observing public information.

Each of the kinds of specification mentioned above constrains the behavior of a program, but
leaves significant leeway for programmers to make different implementation choices. This allows
the specifications to cover a wide range of solutions without compromising on correctness. Formal
specifications typically come equipped with reasoning principles to help users verify the correctness
of programs. In the case of program logics, these include inference rules involving the different
syntactic constructs of the language. In the case of noninterference, this can include a type system
that ensures that programs do not leak any private information. These reasoning principles are

justified with respect to the formal semantics of the language.
1.3. Interaction Trees

Interaction Trees, or ITrees (Xia et al., 2020), are a new form of formal semantics for representing
interactive, effectful, and potentially nonterminating computations. Most mechanized proof of
properties of interactive, effectful, and potentially nonterminating computations rely either on
operational semantics or on trace models (Focardi et al., 2002; Malecha et al., 2011; Gu et al., 2016).
Such representations have been instrumental in mechanized proofs of programs in diverse settings.
However, they each have significant drawbacks as well. Small-step operational semantics are
noncompositional, and require auxiliary information (like program counters, evaluation contexts,
and stateful stores) in addition to the syntax in order to specify their behavior. Both operational
semantics and trace models rely on noncomputable predicates, rendering them unable to be run

either for testing purposes or as a reference implementation.

ITrees, in contrast, are an executable, compositional, and denotational semantics for programming
languages. This unique combination of features provides many advantages for program verification.
Executability enables the formal semantics of a programming language to be tested, just like a
compiler or an interpreter. This opens up the possibility of using all of the available tools for testing

programs to check properties, reducing the possibility that a large amount of effort is spent trying



to prove a property that is actually false. Compositionality gives us the ability to separate reasoning
about different language effects. Traditional semantics tend to model all effects in an interconnected
way, making it impossible to reason about the exception behavior of a language separately from its
stateful behavior. Denotational semantics map programs to mathematical objects in the underlying
metatheory. This allows us to use more of the tools of our metalogic. For example, loops are defined
in terms of a Coq function, which is reusable across different program semantics, rather than in
terms of inference rules in an inductive step relation specific to a particular language semantics
This in turn allows proof engineers to reuse a single reasoning principle about this underlying loop

function. They also admit simpler equational theories than operational semantics.

A growing number of projects seek to profit from these advantages by using I'Trees. This includes
Vellvi (Zakowski et al., 2021a), an ITrees based semantics for the LLVM programming language.
The Vellvin project makes extensive use of the compositionality of effects in I'Trees, separately defining
several categories of effects required in LLVM. This ITrees based semantics automatically yields a
reliable reference interpreter, an invaluable tool for testing production implementations. Vellvm has
also been used to justify compiler optimizations, heightening trust in LLVM compiler passes. It also
includes the Heapster project (He et al., 2021). Heapster provides a memory safe type system to
LLVM code, along with a program that transforms well typed LLVM code into equivalent programs,
known as functional specifications, written directly with the ITrees datastructure!. ITrees have also
been used in the DeepSpec web server to formalize a server’s specification (Koh et al., 2019), in
the Conditional Contextual Refinement framework for reasoning about code with independently
defined modules (Song et al., 2023), and in the DimSum framework for reasoning programs involving

multiple languages (Sammler et al., 2023).

These successes provide good reasons to consider an I'Trees semantics when developing the formal
semantics of a programming language. Another reason to consider an ITrees semantics is the
advantage of standardization. A problem that arises in the formalization of one language can lead

to tools that directly apply to the formalization of another. If we create tools for reasoning about

"Heapster is discussed at length in Chapter 5.



formal specifications over ITrees, the tools can be imported to different languages as libraries of
verified code. However, because I'Trees are a new technology, relatively few such tools exists yet. In
this dissertation, I develop reusable, language-independent tools for different classes of

specifications over programs with ITree semantics.
1.4. Contributions

In particular, I introduce three additions to the I'Trees literature that each investigate how we might

define certain kinds of specifications with respect to ITrees semantics.

e In Chapter 3, I show how to apply an array of algebraic-effect-aware specification types to
ITrees semantics using an extension of Dijkstra Monads (Maillard et al., 2019). The work in

this chapter is formalized in the artifact provided in Silver and Zdancewic (2020).

e In Chapter 4, I develop an information flow aware bisimulation relation for ITrees, enabling
the specification of information flow properties like noninterference on I'Trees. The work in

this chapter is formalized in the artifact provided in Silver et al. (2023a).

e In Chapter 5, I augment I'Trees with universal and existential quantification operators, show
how to use it as a language of specifications for I'Trees, and demonstrate its effectiveness in
verifying real C programs when used in concert with the Heapster tool (He et al., 2021). The

work in this chapter is formalized in the artifact provided in Silver et al. (2023d).

The definitions and theorems in this dissertation have all been formalized in the Coq proof assistant.
1.5. Attribution

Most of the work presented in this dissertation was adapted from my previously published papers. I
performed the majority of the technical work, particularly with respect to the Coq developments,
and wrote the papers in collaboration with several coauthors. Chapter 3 is an adaptation of Dijkstra
Monads Forever: Termination-sensitive specifications for interaction trees (Silver and Zdancewic,
2021), which I wrote with my advisor Steve Zdancewic. Chapter 4 is an adaptation of Semantics for

Noninterference with Interaction Trees (Silver et al., 2023b), which I wrote with Paul He, Ethan



Cecchetti, Andrew Hirsch, and Steve Zdancewic. Chapter 5 is an adaptation of Interaction Tree
Specifications: A Framework for Specifying Recursive, Effectful Computations that Supports Auto-
active Verification (Silver et al., 2023c), which I wrote with Eddy Westbrook, Matthew Yaccavone
and Ryan Scott. Both Semantics for Noninterference with Interaction Trees and Interaction Tree
Specifications: A Framework for Specifying Recursive, Effectful Computations that Supports Auto-
active Verification have been accepted for publication at ECOOP 2023. The work in each chapter
is heavily reliant on Interaction Trees (Xia et al., 2020). In particular, Chapter 2 is primarily a
repackaging of information from Xia et al. (2020), with the exception of Section 2.7 which repackages
information originally produced for Dijkstra Monads Forever (Silver and Zdancewic, 2021) and

Interaction Tree Specifications.



CHAPTER 2

Interaction Trees

2.1. Definition

Interaction Trees (ITrees) are a data structure for denotational semantics implemented as a coinductive
variant of the free monad in Coq. The use of coinduction enables I'Trees to represent possibly divergent
computation. The monadic structure of ['Trees provides a natural notion of sequential composition.

And free monads provide an interface for flexibly representing various effects, as we will see below.

Intuitively, I'Trees represent effectful programs as potentially infinite trees. Concretely, the I'Tree type
is parameterized by a return type R and a type family E with sort Type — Type. The definition is
presented in Figure 2.12. The Ret constructor forms the leaves of these trees, which carry inhabitants
of the R type. These leaves represent pure computations with no effects. Given any pure value r : R,

Ret r represents the program that does nothing except return the value r.

The Tau constructor represents one step of silent internal computation inside an ITree. Tau nodes are
key for representing programs that diverge without performing any other effect. An example of such
a program is while (true) do {skip}. Because ITrees are defined as a coinductive type, an infinite
number of Tau nodes can be chained together to form an I'Tree consisting only of silent internal steps

of computation. This is implemented in the following code.

CoFixpoint spin {E R} : itree E R := Tau spin.

The Vis constructor forms the branching nodes of ITrees. Each Vis node is labelled with an event of
type E A. Given an event e : E A, A is called the answer type of e. Events are inert values that are
primarily used to represent algebraic effects (Plotkin and Pretnar, 2013; Bauer and Pretnar, 2015;
Plotkin and Power, 2001). The answer type of an event is the type of the answer the corresponding

effect would evaluate to if interpreted by an environment. For example, consider the type family

2In the actual formalization, we use a negative coinductive types presentation of this data structure.



CoInductive itree (E : Type — Type) (R : Type): Type :=

| Ret (r : R) (* computation terminating with value r *)
| Tau (t : itree E R) (¥ "silent" tau transition with child t *)
| vis {A : Type} (e : E A) (k : A — itree E R). (* visible event e yielding answer in 4 *)

Figure 2.1: Interaction Trees definition

implemented by the following code.

Inductive stateE : Type — Type :=
| Get : stateE nat
| Put : nat — stateE unit.

The Get event in stateE represents an access of the state cell. When the environment interprets this
event, it will provide an answer in the form of a natural number. A Put n event in stateE represents
a mutation to the state cell, replacing its current contents with n. When the environment interprets
this event, it will provide an answer without any computational information, represented by a unit
value tt. This unit value represents a signal from the environment indicating that the Put event has
finished; it gives no further information about how it may have affected the environment . While
events are often used to represent algebraic effects such as state, Section 2.6 demonstrates how to
use them to define recursive computations in ITrees, and Chapter 5 demonstrates how to use them

to define logical quantifiers.

The continuation, of type A — itree E R, contained in the Vis node determines how the rest of the
program executes after the environment interprets the event. This continuation defines a branch of

the I'Tree for each element of the answer type A.

For a simple example, consider the following program.

Definition access : itree stateE nat :=
Vis Get (fun n = Ret n).

The access I'Tree consists of a single Vis node with a Get event and defines each branch off of the
node as a pure computation that returns the answer provided by the state access. It defines all of

these branches with the single function fun x = Ret x. As another example, consider the following



more complicated program.

Definition increment : itree stateE unit :=

Vis Get (fun n = Vis (Put (1 + n)) (fun _ = Ret tt)).

The increment program accesses the current value of the state cell, places the successor of that value

into the state cell, and returns the unit value to indicate termination.
2.2. Equivalence Up To Tau (eutt)

One of the major advantages of the I'Trees datatype is the rich equational theory provided for it
in Xia et al. (2020). The primary notion of equivalence used for I'Trees is called eutt or equivalence
up to tau. Xia et al. (2019) defines eutt as a bisimulation relation that quotients out finite differences
in the number of Tau constructors. We use this relation because Tau constructors are supposed to
indicate silent steps of computation. Ignoring finite numbers of Tau constructors lets us equate two

ITrees that vary only in the number of silent computation steps.

Consider the following I'Tree,

Definition increment_with_taus : itree stateE unit :=
Tau (Vis Get (fun n = Vis (Put (1 + n)) (fun _ = Tau (Ret tt)))).

It has the same visible events and return values as increment, but has an extra Tau node at the head
and right before the leaves. Because Tau nodes represent silent steps of computation, we want to
equate the increment and increment_with_taus I'Trees. The eutt relation is designed to contain this

equation.

In Section 2.8, we provide semantics for a simple imperative language in terms of I'Trees. In this
semantics, the number of loop iterations affects the number of Tau nodes in the resulting I'Tree. This
means we need to ignore finite numbers of Tau nodes in order to equate two programs with identical

input /output behavior that differ in the number of loop iterations.

The eutt relation is parameterized by a relation RR over return values. In general, the relation RR is

heterogeneous, relating values over distinct types R1 and R2. The eutt RR relation is heterogeneous in



general as well, relating values over itree E R1 and itree E R2. Intuitively, if eutt RR t1 t2, then
the Vis nodes of t1 precisely match those of t2, and if equivalent paths in t1 and t2 lead to the

leaves Ret r1 and Ret r2, then the values r1 and r2 are related by RR.

Often we are interested in homogeneous relations, RR : R — R — Prop, that relate I'Trees with the
same return type. In particular, we are interested in eutt eq and denote this relation with the

symbol ~=.

The eutt relation is implemented in Coq using both inductive and coinductive techniques. Observe

the following definition of eutt:

Inductive euttF {E R1 R2} (RR : Rl — R2 — Prop) (sim : itree E R1 — itree E R2 — Prop) : itree E

R1 — itree E R2 — Prop :=

| eutt_Ret (rl1 : R1) (r2 : R2) : euttF RR sim (Ret rl1) (Ret r2)

| eutt_Tau (t1 : itree E R1) (t2 : itree E R2)

sim t1 t2 — euttF RR sim (Tau t1) (Tau t2)

| eutt_Vis A (e : EA) (k1 : A — itree E R1) (k2 : A — itree E R2)
(V a, sim (k1 a) (k2 a)) — euttF RR sim (Vis e k1) (Vis e k2)

| eutt_Taul (t1 : itree E R1) (t2 : itree E R2)
euttF RR sim t1 t2 — euttF RR sim (Tau t1) t2

| eutt_TauR (t1 : itree E R1) (t2 : itree E R2)
euttF RR sim t1 t2 — euttF RR sim t1 (Tau t2).

Definition eutt {E R1 R2} (RR : R1 — R2 — Prop) : itree E R1 — itree E R2 — Prop :=
gfp (euttF RR).

The euttF relation is an inductively defined relation, defined in terms of the sim argument. The
eutt relation is then defined as the greatest fixpoint, gfp, of euttF3. Calls to the sim argument in
the definition of euttF correspond to coinductive calls to eutt. Recursive calls to euttF correspond
to inductive calls to eutt. This method of defining eutt allows the coinductive constructors to be
called infinitely often in sequence, while only a finite number of calls to inductive constructors can
be chained without an intervening call to a coinductive constructor. Specifically, only finitely many
eutt_Taul and eutt_TauR steps, which remove a Tau from only one side, are allowed before one of the

remaining rules is used to relate the same constructor on both sides.

This definition allows us to achieve our goal of ignoring any finite difference in numbers of Tau

3In this document, all greatest fixpoints are defined using the paco library (Hur et al., 2013)

10



constructors. In particular, we can prove that spin is equivalent to itself, that Tau (Ret 0) is
equivalent to Ret 0, that increment is equivalent to increment_with_taus, and that spin is not

equivalent to Ret 0.

It is important to note that the eutt relation does not have any information about the semantics of
the algebraic effects that an event represents. It reasons exclusively about the tree structure. For

example consider the following two programs.

Definition access : itree stateE nat :=
Vis Get (fun n = Ret n).

Definition access2 : itree stateE nat :=
Vis Get (fun nl = Vis Get (fun n2 = Ret n2)).

The first program is the same access example presented in Section 2.1. This program accesses the
value in the state cell and returns it as output. The second program makes two accesses to the
state cell and then returns the answer to the second access as the result. Intuitively, we may want
to identify these programs because they compute the same return value and output state when
given the same input state. However, they are not related by eutt. This is both because they have
different numbers of events, and because the eutt relation lacks the knowledge that state accesses
don’t change the state. In Section 2.4, we solve this problem by providing a way to give semantics
to the uninterpreted events in an ITree. With the proper interpretation, these two programs are

equated.
2.3. Monad and Iteration Structure

ITrees form a monad. Monads are a mathematical structure for representing computations with a
notion of sequential composition. For the purposes of this document, monads are defined with the
type class presented in Figure 2.2. A monad is a type family, M : Type — Type, with corresponding
ret and bind functions. An element of M A is a computation that returns a value of type A. The
ret combinator of a monad wraps up a pure value a into a monadic computation. And the bind
combinator sequentially composes two, potentially effectful, computations. That is, bind m k is the

computation that consists of executing m : M A and feeding any result of type A into the continuation

11



Class Monad (M : Type — Type) :=
{
ret : V(A : Type), A — M A;
bind : V(A B : Type), MA - (A - M B) - MB }.

Class MonadIter (M : Type — Type) :=
{

monad : Monad M;
iter : V(A B : Type), (A M (A +B)) - A —-MB }.

Class MonadIterLaws (M : Type — Type) “{MonadIter M} :=
{
bind_ret_1 : Va k, bind (ret a) k ~k a;
bind_ret_r : Vm, bind m ret ~m;
bind_bind : Vm k1 k2, bind (bind m k1) k2 ~bind m (V x = bind (k1 x) k2);
iter_bind : Vbody a, iter body a ~ bind (body a) (case (iter body) ret )
R

Figure 2.2: Monad and Iteration Typeclasses

k : A — M B to determine the rest of the computation.

Figure 2.2 also presents the monad iterator type class, MonadIter. Instances of MonadIter, in addition
to implementing the functions required by Monad, must implement a generalization of a do-while loop
called iter. The iter function extends do-while loops to include input and output values. The iter
function defines a loop in terms of the a loop body, body : A — M (A + B). The type A represents
inputs to the loop as well as signals to continue running the loop. In the execution of the loop,
continuation signals are fed into the loop body as input to compute the next iteration. The type B
represents final outputs to the loop. Given an initial input, init : A, the result of iter body init,
of type M B, is obtained by computing body init, and binding a continuation that terminates the
loop if it is passed a B value, and reruns the loop if given an A value. We call a type family that

satisfies the MonadIter typeclass, an iterable monad. I'Trees are an example of an iterable monad.

Concrete implementations of these typeclasses for ITrees can be founded in Figure 2.3. The ret
combinator is implemented by the Ret constructor. The bind combinator is implemented by grafting
the continuation k onto each of the leaves of the I'Tree m. It is implemented as a cofixpoint in Coq.

The iter combinator can be implemented in terms of bind, again using a cofixpoint.

ITrees satisfy a collection of equations, including the well-known monad laws, the less well-known

12



Definition ret_itree {E R} (r : R) : itree ER := Ret r.

CoFixpoint bind_itree {E A B} (m : itree E A) (k : A — itree E B) : itree E B :=
match m with
| Ret a =k a
| Tau t = Tau (bind_itree t k)
| Vis e kvis = Vis e (fun x = bind_itree (kvis x) k )
end.

CoFixpoint iter_itree (body : A — itree E (A + B)) (a : A) :=
bind (body a) (fun ab : A + B = match ab with
| inl a = Tau (iter_itree body a)
| int b = Ret b
end) .

Class MonadIter {E} (itree E) := {|

ret := ret_itree;
bind := bind_itree;
iter := iter_itree |}.

Figure 2.3: I'Tree Typeclass Instance Definitions

Definition interp_body {E M : Type — Type} “{MonadIter M} {R : Type}
(handler : VA, EA — M A)
(t : itree ER) : M (itree ER + R) :=
match t with
| Ret r = ret (inr r)
| Tau t = ret (inl t)

| Vis e k¥ = bind (handler _ e) (fun a = ret (inl (k a)))
end
Definition interp {E M : Type — Type} “{MonadIter M} {R : Type}
(handler : VA, EA — M A) : itree ER — MR :=
iter interp_body.

Figure 2.4: Interpretation Definition

iteration laws, and a collection of ITree specific equations regarding Vis and Tau nodes. For example,
the iteration laws contain an equation, named iter_bind, which expresses that iter loops are
equivalent to their unfoldings. A selected subset of these equations are presented in Figure 2.2.
These equations, using the eutt relation as the notion of equivalence, form the primary interface for
reasoning about semantics written with I'Trees. Repeated rewrites using these equations allow us

reason about the execution of programs by simplifying their denotations.

2.4. Interpretation

The inert event nodes in an ITree are typically used to represent algebraic effects. Recall the stateE

event type family, presented again in Figure 2.5. ITrees with events in stateE represent simple
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Inductive stateE : Type — Type :=
| Get : stateE nat
| Put : nat — stateE unit.

Definition stateITree (A : Type) : Type :=
nat — itree voidE (nat * A).

Definition stateE_handler : VA, stateE A — stateITree A :=
fun _ e =
match e with
| Get = fun s = Ret (s,s)
| Put s = fun _ = Ret (s, tt)
end.

Definition interp_state : VA, itree stateE A — stateITree A) :=
interp stateE_handler.

Figure 2.5: Example State Event Signature

stateful programs, which can read and write to a single state cell which contains a natural number
value. However, as discussed at the end of Section 2.2, this representation is missing information

about how stateful programs actually run.

In order to obtain the desired equational theory, we need to provide semantics for the inert events that
maps the events to the algebraic effects that they represent. This mapping requires the representation
of effectful computations to have an iterable monad structure. For example, figure 2.5 provides the
stateITree type family which adapts the standard state monad for this purpose. The stateItree A
type contains functions from natural numbers, the type of values in the state cell, to I'Trees that
return a value of A along with another natural number, the updated state cell. This type is an
iterable monad represents possibly divergent stateful computations, and it can be assigned a lawful

monad iterator structure based closely on the iterable monad structure of ITrees.

We assign semantics to an event signature using a handler. Given an event signature E and
an iterable monad M, a handler is a parametric function from E to M, with type V A, E A — M A.
Figure 2.5 provides the handler for stateE. The stateE_handler function maps Get events to stateful
computations that return the current state as both the output state and the return value, modelling
a state access. It maps Put s events to stateful computations that ignore their input state, return

s as the new output state, and return the placeholder value tt as their output, modelling a state
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mutation.

ITrees support the definition of interpreters, functions from ITrees to computations modeled as an
iterable monad. Given a handler, an interpreter traverses an I'Tree and use the handler to transform
its inert events into effectful programs. That is, given a handler h, it transforms an I'Tree, Vis e k
into the effectful computation that consists of h e sequentially composed with interpretation of k with
the same handler. In order to create this interpreter, the type family of effectful computations needs
three things: a way to represent pure computations to interpret Ret nodes; a way to sequentially
compose effectful computations to insert handled events back into place; and a form of nonterminating
computation in order to represent potentially infinite ITrees. These requirements correspond exactly
to the constraints of the monad iterator typeclass which requires: a ret combinator for pure

computations; a bind combinator for sequential composition; and an iter combinator loop.

Figure 2.4 presents the implementation of the interp function which maps handlers to interpreters.
The interp function uses iter to create a loop of the interp_body function. Recall that iter loops
rely on a continuation signal type as well as an output type. The iter loop used to define interp
uses uninterpreted ITrees, itree E R, as the continuation signal. The loop body accomplishes one
step of the tree traversal. If it encounters a Ret r node, it terminates the loop with ret (inr r). If it
encounters a Tau t node, it removes the Tau and returns the rest of the tree to be traversed. The iter
combinator reruns the loop body on inl values, so this is accomplished by returning ret (inl t).
Finally, if it encounters a Vis e k node, it uses the handler to produce a computation handler e, and
uses bind to sequentially compose the handled event with the continuation k which has been marked
for further traversal. Intuitively, the intermediate values produced by interp_body can be thought of
as computations which can return either return values or ITrees. Executing this loop with iter has

the effect of traversing through all possible intermediate ITrees, and evaluating away their events.

With this machinery, we can revisit our simple state example. Recall the stateful computations,

Definition access : itree stateE nat :=
Vis Get (fun n = Ret n).

Definition access2 : itree stateE nat :=
Vis Get (fun nl = Vis Get (fun n2 = Ret n2)).
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Class ReSum (E1 E2 : Type — Type) :=
resum : VA, E1 A — E2 A.

Notation "E1 -< E2" := (ReSum E1 E2) (at level 10).

Definition trigger {E1 E2 A} "{E1l -< E2} (e : E1 A) : itree E2 A :=
Vis (resum e) (fun x = Ret x).

Figure 2.6: ReSum Definition

Given the interpreter defined in Figure 2.5, the Get events will be given interpreted as actual state
accesses. The resulting stateful computations take equal initial states to eutt result computations,
which is an equivalence relation over stateful computations. Both of the resulting computations are

equivalent to the following computation.

Definition access_interpreted : statelTree nat :=
fun (n : nat) = Ret (n, n).

2.4.1. Subevents

In practice, I'Trees often end up using an event type family E that is a composition of several smaller
type families combined in a large sum. This can easily clutter and complicate the notation. To avoid
this burden, the ITrees library introduces the ReSum typeclass defined in Figure 2.6. An instance
of ReSum E1 E2, written E1 -< E2, is a function that injects an element of E1 A into E2 A. It can be
thought of as a kind of subevent typeclass. The ReSum typeclass allows for the definition of the
trigger function in Figure 2.6. The trigger function takes an event el : E1 A and injects it into

itree E2 A by injecting el into E2 A and placing that in a Vis node.
2.5. Presenting Mixed Inductive Colnductive Relations

In order to reason about ITrees, we will need to introduce several other relations that mix inductive
and coinductive reasoning priciples similarly to eutt. These relations are defined with a large number
of different constructors which can be cumbersome present and reason about. For clarity, these
definitions will be presented as a series of inference rules. For instance, figure 2.7 presents the
definition of eutt in this format. As is standard for inference rules, the propositions above the line
are assumptions, the proposition below the line is the conclusion, and all free variables are assumed

to be universally quantified. Each inference rule corresponds to one of the constructors used to
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RR rl1 r2 eutt RR t1 t2

[EUTTRET] [EUuTTTAU]
eutt RR (ret rl) (ret r2) eutt RR (Tau t1) (Tau t2)
Va, eutt RR (k1 a) (k2 a) eutt RR t1 t2
[EUTTVIS| [EuTTTAUL]
eutt RR (Vis e k1) (Vis e k2) eutt RR (Tau t1) t2

eutt RR t1 t2
[EUTTTAUR]

eutt RR t1 (Tau t2)

Figure 2.7: Inference Rules for eutt

define euttF. Inference rules with a single line correspond to constructors that use only inductive
self reference. Inference rules with a double line correspond to constructors that use only coinductive
self reference. These coinductive inference rules perform the same tasks as references to the sim

argument in the definition of euttF.

The primary weakness of presenting inductive/coinductive relations this way is that the implicit
quantification of parameters in these rules removes an opportunity to explicitly specify the types of
these parameters. We make up for this shortcoming by specifying the types in the declaration of the

definition. For example, observe the following definition of eutt.
Definition 1 (Equivalence up to tau (eutt)). Given:

e an event signature E;

o return types R1 and R2;

e and a return relation over R1 and R2, RR,

equivalence up to taus with RR, a relation between itree E R1 and itree E R2, is defined with the

inference rules presented in Figure 2.7. We write this relation as eutt RR t1 t2.

Going forward in this document, relations defined with a mixture of induction and coinduction will

be presented in this style.
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CoFixpoint interp_mrec {D E R} (bodies : VA, D A — itree (D +’> E) A) (t : itree (D +’ E) R)
itree ER :=
match t with
| Ret r = Ret r
| Tau t = Tau (interp_mrec bodies t)
| Vis (inll d) k = Tau (interp_mrec bodies (bind (bodies _ d) k))
| Vis (inrl e) k = Vis e (fun x = interp_mrec bodies (k x))
end.

Definition mrec {D E A} (bodies : VA, D A — itree (D +> E) A) (d : D A) :=
interp_mrec bodies (trigger d).

Figure 2.8: mrec Definition

Inductive evenoddE : Type — Type :=
| even (n : nat) : evenoddE bool
| odd (n : nat) : evenoddE bool.

Definition evenodd_body : VA, evenoddE A — itree (evenoddE +’ E) A :=
fun _ eo =

match eo with
| even n = if n =7 0

then Ret true

else trigger (odd (n -1))
| odd n = if n =7 O

then Ret false

else trigger (even (n -1))
end.

Definition evenodd : evenoddE bool — itree E bool :=
mrec evenodd_body.

Figure 2.9: evenodd Example

2.6. Mutual Recursion

The ITrees library also provides a mutual recursion operator, mrec. The mrec operator works by
using events as a form of syntax indicating a recursive function call site. The mrec operator defines
recursive computation in terms of one level of unfolding of the recursive calls. The definition of mrec
is presented in Figure 2.8. It utilizes an event type family D which represents recursive function calls.
An event d : D A represents a recursive function call that returns a value of type A. The event d
packages together the choice of the function being called with the arguments being supplied to that
function. The bodies function assigns every recursive function call event, d : D A, a corresponding
ITree in itree (D +’ E) A. This ITree represents the evaluation of the recursive function call in terms

of further inert D events, acting as syntactic recursive calls. The interp_mrec, defined in Figure 2.8,

18



function takes an ITree with syntactic recursive calls, replaces each call d : D A with the unfolded
function body bodies d, and corecursively repeats this process with the resulting I'Tree. Given this
function, mrec is defined by applying interp_mrec to a tree that consists of triggering a single event,

which represents the initial function call.

For a concrete example, observe the definition of evenodd in Figure 2.9. This mutually defines both
an even and odd function. To accomplish this, it first defines evenoddE, an event type that packages
together the names of the function calls, even and odd, and their arguments, a natural number in
each case. Both the even and odd events require a natural number argument. Both even and odd
events have the type evenoddE nat, which means they both have natural numbers as their response
types. This shared response type signifies that both functions return a boolean value. Then we
must define the bodies of these functions with evenodd_body. The evenodd_body function first pattern
matches on its argument to determine which function is being called. Given an element of evenoddE
it returns an element of itree (evenoddE +’ voidE) bool. This allows the returned I'Tree to contain
events that represent more recursive calls. We compute even by computing triggering an odd (n - 1)
event and compute odd by triggering an even (n - 1) event. Both functions have a trivial base case
at 0. Finally, we apply the mrec function which intuitively takes an initial function call event, and
keeps unfolding it by applying evenodd_body and unfolding any function call events evenodd_body

produces.
2.7. Heterogeneous Equivalence Up To Taus (rutt)

While eutt is a very useful relation, its constraint to only relate I'Trees with precisely equal events
is too restrictive for the purposes of some work in this dissertation. Suppose we want to relate
ITrees that have different event signatures. This is essential for developing a trace model of ITrees,
presented in Chapter 3, as well as reasoning about mutually recursive functions. In this section, we
introduce the rutt relation, which generalizes the eutt relation with the capability to choose what
pairs of events to relate at the head of Vis nodes, as well as the ability to constrain the possible

result types.

First, we will briefly discuss how we choose events and response types for events. Figure 2.10 presents
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Definition PreRel (E1 E2 : Type — Type) := VA B, E1 A — E2 B — Prop.
Definition PostRel (E1 E2 : Type — Type) := VA B, E1 A - E2 B —- A — B — Prop.
Inductive SumPreRel {D1 D2 E1 E2} (RPrel : PreRel D1 E1) (RPre2 : PreRel D2 E2) : PreRel (D1 +’ D2)
(E1 +’ E2) :=
| sumprerel_inll A B (d : D1 A) (e : E1 B) : RPrel ABd e —
SumPreRel RPrel RPre2 (inll d) (inli e)
| sumprerel_inrl A B (d : D2 A) (e : E2 B) : RPre2 A B d e —

SumPreRel RPrel RPre2 (inrl d) (inril e).
Notation "RPrel ’@’’ RPre2" := (SumPreRel RPrel RPre2) (at level 10).

Inductive SumPostRel {D1 D2 E1 E2} (RPostl : PostRel D1 E1) (RPost2 : PostRel D2 E2) : PostRel (D1
+’> D2) (E1 +’ E2) :=
| sumpostrel_inll A B (d : D1 A) (e : E1 B) (a : A) (b : B) : RPostl1 ABdeab —
SumPostRel RPostl RPost2 (inll d) (inll e) a b
| sumpostrel_inrl A B (d : D2 A) (e : E2B) (a : A) (b : B) : RPost2 ABdeab —
SumPostRel RPostl RPost2 (inrl d) (inrl e) a b.
Notation "RPostl @’’’ RPost2" := (SumPostRel RPostl RPost2) (at level 10).

Figure 2.10: Heterogeneous event relations

the definitions of both PreRel and PostRel. Elements of PreRel can be thought of as relations over
event types, quantifying over all possible response types. The rutt relation uses PreRel elements as
a kind of precondition for relating events. Only events that satisfy a particular precondition are
allowed to progress in an rutt simulation proof. Elements of PostRel can be thought of as functions
that map events to relations over the response type. The rutt relation uses the result of this PostRel
function applied to the events as a postcondition that can be assumed to hold on any responses to
events that satisfy the precondition. Below these definitions, Figure 2.10 presents variants of the

sum relation for both PreRel and PostRel.
Definition 2 (HeteRogeneous equivalence up to taus (rutt)). Given:
o cvent signatures E1 and E2; return types R1 and R2;

e a precondition relation over E1 and E2, RPre;

a postcondition relation over E1 and E2, RPost; and

a return relation over R1 and R2, RR,

heterogeneous equivalence up to RPre, RPost and RR, a relation between itree E1 R1 and itree
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RR r1 r2

[RUTTRET]
RPre;RPost I (ret rl) a5y (ret r2)

RPre;RPost |- t1 =zpg t2 RPre;RPost |- t1 ~pp t2
[RUTTTAU| [RUTTTAUL]
RPre;RPost - (Tau t1) a5y (Tau t2) RPre;RPost i (Tau t1) ~pp t2

RPre;RPost - t1 =g t2

[RUTTTAUR|
RPre;RPost I t1 ~5pg (Tau t2)

RPre el e2 V a b, RPost el e2 a b — RPre;RPost I (k1 a) ~gp (k2 b)

[RUTTVIS]
RPre;RPost - Vis el k1 =g Vis e2 k2

Figure 2.11: rutt Definition

E2 R2, is defined with the inference rules presented in Figure 2.11. We write this relation as

RPre; RPost | t1 ~epp t2.

The rutt relation is defined very similarly to eutt, with the primary difference being the RUTTVIS
rule. Intuitively, this rule says that if two events are in the precondition, we can assume that their
evaluated answers satisfy the postcondition. Concretely, when relating two ITrees, Vis el k1 and
Vis e2 k2, rutt first requires that the precondition, RPre, holds on e1 and e2. It further requires that
given any possible responses, a and b, that satisfy RPost A B el e2, the continuations k1 a and k2 b

must be related as well.

Most eutt theorems, including ones regarding monad iterator combinators and transitivity, can be

generalized to rutt theorems. One use of rutt is to provide a good reasoning principle for mrec.
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Theorem 1 (Mutual Recursion Respects Heterogeneous Equivalence). If recursive call events init1
and init2 are contained in the precondition invariant RPrelInv, and given any recursive call events,
d1 and d2, contained in RPrelnv, RPrelnv @' RPre;RPostInu @" RPost - bodiesl dl =ppq
bodies2 d2 where RPd = RPostInv d1 d2, then

RPre; RPost - mrec_spec bodiesl initl ~pp; mrec_spec bodies2 init2

where RP1 = RPostInv initl init2.

This theorem reduces proving an rutt bisimulation between two I'Trees defined with mrec to proving
an rutt bisimulation between the function bodies. This eliminates a layer of recursive reasoning,
potentially encapsulating a coinductive proof. The bisimulation over the function bodies contains
extra event pre- and postconditions. The event relations over the base event signature E, RPre and
RPost, are present in both the hypothesis and conclusion. The event relations over the recursive call
event signature D, RPreInv and RPostInv, are present only in the hypothesis. These relations enforce
pre- and postconditions on recursive calls. Intuitively, they enforce that each recursive call on the
left must be matched by a recursive call on the right, such that the pair satisfy the precondition,

and enable the assumption that these recursive calls return results that satisfy the postcondition.
2.8. Example Language (Imp)

This section presents the denotational semantics for a simple stateful language using I'Trees. This
semantics serves as an example of a typical I'Trees semantics. A typical path from a language syntax
to an I'Trees semantics consists of: a denotation function from programs to I'Trees over an event type
family, E1, with constructors for every effect in the language; and an interpreter from that ITree
into a target monad that is a stack of effect monad transformers applied to itree E2 for some other
event type family, E2. This second event type family, E2, contains constructors for effects that are
represented well by uninterpreted events. Common choices for E2 include voidE, the empty event

type family, and IOE, the event type family which represents input and output from the user.

Figure 2.12 gives (an excerpt of) a denotational semantics for a simple imperative language called
IMP (adapted from Software Foundations Pierce et al. (2018)). The type com defines the syntax of

commands, which include skip, variable assignment, sequential composition, conditionals, and while
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Expressions e == x| n|et+e|e—e|exe
Commands ¢ == skip | x:=e | ¢1;ca | while (e) do {c}

| if (e) then {c1} else {ca}

(* IMP Events *)

Inductive ImpE : Type — Type :=

| GetE (x : var) : ImpE nat

| SetE (x : var) (v : nat) : ImpE unit.

Definition while (step : itree ImpE (unit + unit)) : itree ImpE unit :=
iter (fun _ = step) tt.

[-] : Command — itree impE unit
[skip] = ret tt
[x :=e] =v < [e];; trigger (SetE x v)
[e1 s co] = [ea] s [ee]
[while (e) do {c}] = while(v < [e];;
if ([e]) then {[c1];;ret (inl tt)} else {ret (inr tt)})
[if (e) then {c1} else {c2}] = if ([e]) then {[c1]} else {[c2]}

Definition handle_ImpE : VX, ImpE X — stateT st Delay X := (* omitted *)

Definition interp_imp (t : itree ImpE unit) : stateT st Delay unit :=
interp handle_ImpE t.

Figure 2.12: IMP denotational semantics (excerpt).

loops. The events interface ImpE defines the GetE and SetE events, which model reading and writing
to the state. The function denote_imp builds an ['Tree with ImpE events. The case for assignment uses
trigger to create a SetE node. (GetE events are used to read from the global state in the denotations
of expressions, which are omitted here.) The denotations of sequential composition and conditionals
are built straightforwardly from the ITree’s bind operator. The semantics of while is defined using

while, which is a simple wrapper around the ITree’s iter combinator.

Once the syntax has been given an ITrees denotation, it is straightforward to complete the semantics
by interpreting its events into an appropriate state monad. Here, st is a type of maps from
vars to nats. The type of handle_ImpE shows that the resulting computation lives in the monad
stateT st Delay unit, which is equal to st — itree E (st * unit). There are no residual effects:

and when given an initial state, an IMP program either diverges or terminates, yielding some updated
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state (and the unit value).

The ITrees library contains utilities for lifting the equational theory of I'Trees through interpreters
such as interp_imp, which allows for complex, termination sensitive properties of these languages to

be proven without any explicit coinduction.
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CHAPTER 3

Dijkstra Monads Forever

This chapter was previously published as Lucas Silver and Steve Zdancewic. Dijkstra monads forever:
Termination-sensitive specifications for interaction trees. Proc. ACM Program. Lang., 5(POPL),
jan 2021. doi: 10.1145/3434307. URL https://doi.org/10.1145/3434307. 1 was the primary author

and did most of the research.
3.1. Introduction

Chapter 1 discussed a variety of frameworks for formal verification. Despite the success of these
approaches—these tools have been used to verify the correctness of applications ranging from
concurrent mailbox protocols, to cryptography primitives (Protzenko et al., 2020), to Rust library
code (Jung et al., 2017)—there remain improvements to be made. For one thing, most of these
systems are rooted in Floyd-Hoare logic, which makes them most naturally suited to proving partial
correctness. Termination and other liveness properties are considered only separately, outside the
framework, or not at all. (A notable exception is Carbonneaux et al. (2017)’s work on verified
resource analysis.) For another, proof support for interactive programs—programs that exchange
data with their environments—remains challenging, because the possibility of such interactions
complicates both specifications and reasoning. On top of these issues, the way in which the program
semantics is represented also matters. For instance, relationally-specified operational semantics,
as used in VST (via CompCert) and in Iris, cannot be executed—it’s not possible to extract an
executable program from the semantics described that way. This makes such frameworks incompatible
with tools like QuickChick (Lampropoulos and Pierce, 2018), which requires executable specifications
for testing; it also precludes their use for reasoning about Coq programs (or domain specific languages
shallowly embedded in Coq) because it relies on a deep embedding of a language. Such representation

choices matter in practice.

This chapter describes a framework for verifying termination-sensitive properties of possibly divergent,

interactive programs in the proof assistant Coq. The first ingredient is the representation of such
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programs as interaction trees (ITrees), following the work of Xia, et. al. [2020]. ITrees provide a
general-purpose way of defining the semantics of impure, possibly diverging computations, while
retaining extractability (and hence executability). The second ingredient is an extension of the
methodology for deriving Dijkstra specification monads, proposed by Maillard, et. al. [2019]. Dijkstra
monads are a natural fit for I'Trees: the core ITree datatype itself is a monad, and we express I'Tree
computations by interpreting events into monadic operations, yielding a computation type built
out of a stack of monad transformers. Previous work on Dijkstra monads finessed the issue of
nonterminating programs—their computation types bottom out in the Identity monad and, therefore,
lacked nonterminating programs. In contrast, the monads we investigate in this chapter bottom out
in the I'Tree monad for some event type family E. We pay special attention to the case of Capretta’s
Delay monad (Capretta, 2005), which is what remains of an I'Tree once all of its externally-visible

events have been interpreted away.

The Delay monad precisely characterizes nonterminating behaviors, which is what grants ITrees
their expressiveness, but it also means that we must take divergence into account when reasoning
about them—this is one significant challenge that we show how to address in this chapter. The
reward for this effort is that we obtain termination-sensitive specifications that are more expressive

than those available with Floyd-Hoare-style partial correctness assertions.

As a simple example, consider the following imperative program that computes the square root of

the natural number n:

Definition nat_sqrt : com :=

i :=0;

while ~(i * i = n) do {
i=1i+1;

3.

A partial correctness specification of this program says “If the program terminates, then i * i = n.”

The stronger specification that we are able to prove instead says “If there ezists a natural number k
such that k * k = n, then the program terminates and i = k; otherwise the program diverges.” While

partial correctness assertions are suitable for many scenarios, termination-sensitive specifications are
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essential for proving liveness and availability properties.

Aside from accounting for nontermination, I'Trees permit the description of interactive programs.
“Uninterpreted” events in an ITree can be viewed as calls to the environment. Combining non-
termination with such interaction leads to technical challenges both for defining useful notions of
specification—what does it mean to say that an interactive computation meets a specification?—
and for establishing metatheoretic properties—Ilike soundness—of the reasoning principles. This
is a second significant challenge that we address in this chapter though the introduction of trace

specifications.

As a simple example trace specification, consider the following interactive program that repeatedly

queries its environment for a boolean value, stopping only when the result is false:

Definition queryUntilFalse := while (query()) do { skip }.

One provably correct specification of this program’s behavior says “Either the program diverges and
the environment supplied an infinite stream of trues; or, the program halts and the environment

provided some finite number of trues followed by false”.

In summary, this chapter makes the following contributions.

e In Section 3.3 we show how to extend prior work on Dijkstra Monads to account for the
potentially nonterminating behavior allowed by the Delay monad. In doing so, we define
DelaySpec, a specification monad suitable for expressing properties about Delay computations.
This lets us apply the Dijkstra monad methodology to derive an appropriate specification

monad for computations that combine state and nontermination.

e Building on DelaySpec, Section 3.4 defines Floyd-Hoare logic-style specifications, with pre- and
post-conditions, and accompanying rules for reasoning about StateDelay computations. As in
the example above, the natural definition is stronger than either the usual “total correctness” or

“partial correctness” interpretations of Floyd-Hoare-triples—the post conditions can talk about
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the termination behavior of the computation explicitly (unlike total correctness, which implies
termination, or partial correctness, which assumes it). Moreover, we show how to recover
soundness proofs of the usual partial-correctness Hoare logic rules for a simple imperative

language whose semantics is defined denotationally via ITrees.

e To reason about interactive I'Tree computations, we must go beyond the Delay and StateDelay
monads. Unfortunately, the “obvious” generalization of DelaySpec to full ITrees fails to satisfy
the monad laws, and is therefore unsuitable as a specification monad. The crux of the problem
is that bind uses a continuation that takes only an element of the parameter type and completely
ignores the sequence of events that lead to producing that element. This motivates us to seek
a specification in terms of traces of an I'Tree. Section 3.5 develops the technical machinery
needed to define the type of such traces as just another instance of I'Trees proper. These
traces are connected to ITrees by way of a general notion of I'Tree refinement, which is itself

implemented in terms of a generalization of the standard weak simulation relation for ITrees.

e With the above definitions in hand, Section 3.6 defines TraceSpec, a Dijkstra Monad suited to
reasoning about possibly nonterminating, interactive I'Tree programs. Proving the soundness
of such specifications is non-trivial and somewhat technical-—doing so requires us to build
suitable simulation relations to establish that TraceSpec is a monad morphism. Once that is
done, however, such specifications soundly expose the behavior of the program as a “log” of its
interactions with the environment, providing a convenient abstraction for verifying properties

like the one about the queryUntilFalse example above.

All of the results mentioned above have been formally verified in Coq, and the framework is designed

to be used with the Interaction Trees Library.

Our approach to defining Dijkstra Monads for ITrees is inspired by prior research in this area,
especially that of Maillard et al. (2019). We recapitulate the most relevant aspects of that work as
needed throughout the paper. Before diving into the details of DelaySpec and TraceSpec, we first

give some background about Dijkstra monads (Section 3.2).
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3.2. Dijkstra Monads

Dijkstra monads (Swamy et al., 2013; Maillard et al., 2019) are a flexible approach to the specification
and verification of effectful programs modeled with monads. They can represent specifications over
a wide range of algebraic effects including state, exceptions, and 10. A Dijkstra monad comes about

from the interaction of three objects:
e A monad M, called the computational monad;
e A monad W equipped with an ordering relation, called the specification monad;
e And a function,®, from M to W, of type VA. M A — W A, called the effect observation.

The computational monad, M, is the type of programs which the specifications are reasoning about.
The specification monad, W, is the type of the specifications, and the order models specification
refinement. The effect observation is a map from programs to the most precise specification that
they satisfy. The most precise specification is defined as the least specification according to the
refinement ordering. Given a specification monad, W, and two specification w; and ws in W A, we
write that (wy,ws) is in the ordering relation as W w; < we. And if W F w; < wy, then we say

that w; refines ws.

Section 3.2.1 presents and motivates the restrictions we place on valid specification monads and effect
observations. But the currently presented material is enough to define Dijkstra monads. Intuitively,
Dijkstra monads use the provided notions of specifications and mappings from computations to

specifications to define when a computation satisfies a specification.

Definition 3 (Dijkstra monad). Given a computation monad, M, a specification monad, W, an
effect observation from M to W, ©, and a specification w : W A, the corresponding Dijkstra monad
is the set of computations m : M A such that W = © m < w. We write that m is in the Dijkstra

monad defined by M, W, O, and w as © - m € w.

For a concrete example, we can provide a Dijkstra monad for pure computations. The computation
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monad is the identity monad, which maps any type A to itself.

To first approximation, the specification monad is the type family:

IDSpec A := (A—>P)—P

The actual type family has further restrictions, namely monoticity, which are discussed in Section 3.3.
The IDSpec A type is the type of sets of sets over A. It also is the type of continuations into
propositions. The simplest elements of IDSpec are Ap. T and Ap.L, respectively the total and empty
sets. Another simple example, in this case of IDSpec N, is Ap.even C p. This is the set of all
supersets of the set of even natural numbers. We present the monadic structure and specification
refinement orders in Section 3.2.2 after introducing the full definitions for specification monads and

effect observations in Section 3.2.1.

The effect observation from the identity monad to the ID specification is the function:

O/p a:= )\p.(a S p)

The effect observation maps a computation, a, to the set of sets that contain a.
3.2.1. Specification Monads and Effect Observations

A specification monad consists a type family W, which contains the actual specifications, and a
notion of refinement over those specifications. Formally, refinement is modelled with a family of
partial orders, R C W A x W A for each type A. This family of partial orders induces a family of

equivalence relations.

Definition 4. Given a type family W, two elements of W A, wi and wa, are considered equivalent

if Wk w <wg and W wy < wy. In this case we write W F wy = ws.

For W to be a valid specification relation, it must provide definitions for ret and bind that respect

the monad laws using this induced equivalence relation.
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Furthermore, the refinement relation needs to monotonic with respect to the bind operator.

Definition 5 (Monotonicity with respect to bind). Given a monad W with a family of partial orders
Rx CW X xW X, Rx is said to be monotonic with respect to bind if the following implication
holds. Given any monad elements, wi,ws in W A, and continuations, ki,ko in A — W B, such

that (w1, w2) € Ry and given any a in A, (k1 a,ks a) € Rp, then (bind wy ki, bind wy ko) € Rp.

Stated informally, the refinement relation is monotonic with respect to bind, if we can prove refinement
of sequentially composed specifications by separately comparing the head and tail specifications.
This requirement ensures that we can build proofs of specification refinement out of refinements of
smaller specifications. It plays a key role in ensuring that a generalization of the Hoare sequencing

rule holds.

Definition 6 (Specification monad). A type family W along with a family of partial orders Ra C
W A x W A form a specification monad if W forms a monad according to the family of equivalence

relations induced by R and if R is monotonic with respect to the corresponding bind function.

An effect observation between a computational monad M and a specification monad W is a function
©: VA, M A — W A. This function is required to be a monad morphism, meaning that it maps
ret and bind in the computational monad to ret and bind in the specification monad. This forces
the effect observation to preserve a relation between sequential composition of computations and
sequential composition of specifications. In concert with the requirement that the refinement relation
respects bind, this allows proofs that programs satisfy specifications to break down cleanly with

sequential composition.

Definition 7 (Effect observation). Given a monad M and a specification monad W, a function

O : VA M A— W A is an effect observation if the following equations hold:
o foranya in A, WE O (ret a) = ret a;

o foranym in M A andk in A— M B, W ©(bind m k) = bind (© m) (©ok).
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3.2.2. Base Specification Monads

Many commonly used monads can be expressed in terms of a stack of monad transformers. These
monads include computations with multiple kinds of effects. For example, computations with both
state and exceptions can be represented as the state transformer applied to the exception transformer
applied to the identity monad. Maillard et. al. [2019] presents a general technique for producing
specification monads for such computation monads. It relies on identifying an appropriate base
specification monad, a specification monad for the identity monad, and applying the same sequence

of monad transformers used to produce the computation monad to the base specification monad.

The primary base specification monad used in that work is the previously introduced IDSpec type
family:
IDSpec A := (A—-P)—P

As IDSpec is a monad, we need to provide definitions for ret and bind.

ret a:= Ap.(a € p)

bind w k := Ap.((Aa.(p € k a)) € w)

The ret a specification is the set of all sets that contain the element a. And the bind w k specification
builds a set of sets over B using w : IDSpec A and k : A — IDSpec B. This set contains all predicates
p such that w accepts the set of elements of a : A where k a accepts p. This definition is far more
complicated than that of ret, but we can be confident it is correct because it satisfies the constraints

of specifications monads.

The effect observation from the identity monad to the ID specification type is the same as ret.

Orp a:= Ap.(a € p)
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The refinement relation is defined as

IDSpec F wy < wg := Vp.(we C wy)

This definition makes sense when viewed in context of proving a computation satisfies a specification.
For example, consider the proposition that the computation 2 satisfies the specification which contains
all supersets of the set of even natural numbers, Ap.even C p. The following logical propositions are

all logically equivalent, and this equivalence can be justified simply by unfolding definitions.

©rp F 2 € (Ap.(even C p))
IDSpec - ©rp 2 < (Ap.(even C p))
(Ap.(even C p)) C (©1p 2)

(even C p) — (2 € p)

This demonstrates that the proposition O;p 2 € Ap.even C p is equivalent to the proposition that
2 is contained in every superset of the even natural numbers. This is obviously true because 2 is

even.

Performing the same simplification for an abstract computation and specification can further illustrate
how these definitions work together. Suppose there is a computation m and a specification w, and
you want to prove that m satisfies w. The following equations are justified purely by unfolding

definitions.

O pFmew
IDSpec - O;p m < w
w g (@[D m)

Vp.(p € w — m € p)

The proposition that m satisfies the specification w reduces to the proposition m is contained in all
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predicates contained in w. In order words, w contains no properties that exclude m.

With IDSpec as a base specification monad, we can construct specification monads for more expressive

computation monads. Applying the state monad transformer to IDSpec yields the type

StateSpec S A:=S5 = ((SxA) =P) =P

This is the type of functions from states into IDSpec’s over state paired with the return type. Just
as the instances of ret and bind can be automatically generated, we automatically generate a

refinement relation and an effect observation from those defined with IDSpec.

StateSpec S w; < wy :=Vs,IDSpec - wy s <ws s

Os m s:=(m s) € Orp

Note that StateSpec S A is isomorphic to ((S * A) — Prop) — (S — Prop), the type of functions
from postconditions to preconditions over stateful computations. With this in mind, the derived

effect observation is the weakest precondition function.
3.3. Delay Specification Monad

Maillard et. al. [2019] uses the identity monad as the most basic form of computation. In a
strongly normalizing base logic like Coq, all elements of the identity monad represent terminating
computations. Representing possibly divergent computations requires a monad based on coinductive
types. This section presents the Delay monad and uses that to model possibly divergent computations.
This is sufficient for specifying programs with either no effects other than nontermination, or that
can be modelled by a stack of monad transformers applied to the Delay monad. Section 3.6 provides

tools to deal with programs with external, uninterpreted events like 1O or specific system calls.

34



3.3.1. Computational and Specification Monad Definitions
The computational monad is implemented as a form of I'Trees with no visible event nodes. This is

the Delay monad, itree voidE.

To a first approximation, the specification monad is the type of sets of sets over Delay A,

(Delay A - P) - P

This is nearly identical to the IDSpec monad presented in Section 3.2, with Delay A replacing A.
This is also the type of backwards predicate transformers over the Delay monad. The full, possibly
divergent computation is the output, the set over those computations is the output predicate, and

there is no notion of input so the output predicate is mapped to a proposition.

The actual specification monad type introduces two extra constraints. First, specifications only

contain predicates that respect the eutt relation.

Definition 8 (Respecting eutt). A predicate, p, of type Delay A — P respects eutt if, given two
elements of Delay A, t1 and to, that are contained in the relation eutt eq then p contains t1 if and

only if p contains to.

This restriction rules out predicates that distinguish between trees that only differ in the number of
Tau nodes, enforcing the idea Tau is a silent step of computation. This restriction does not rule out
predicates that distinguish between divergent computations, represented as spin, and convergent

computations. To be explicit, this constraint produces the type

{p: (Delay A) — P | p respects eutt} — P

. This kind of set comprehension can be implemented in Coq as a sigma type. For simplicity, we

apply set operations like element containment and subset directly to these sigma types.

Second, the specifications themselves must be monotonic.
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Definition 9 (Monotonic specification). A set of eutt respecting sets w is considered to be monotonic
if given any to predicates p1 and pa in A — P, if p1 C pa and p1 is contained in w then po is also

contained in w.

This constraint is key in proving that the refinement order is monotonic with respect to bind. Adding

this constraint further complicates the formal type in the following way

{w:{p: (Delay A) — P | p respects eutt} — P | w is monotonic}

Definition 10 (DelaySpec). The DelaySpec type family contains the monotonic sets of eutt

respecting sets.

For the remainder of the discussion of DelaySpec, we will elide these finer details. It suffices to know

that every predicate and specification discussed follows these constraints.
3.3.2. Monad Structure

The following code defines ret and bind in the DelaySpec monad.

ret a:= Ap.(ret a) €p

bind w k := Ap.(Mt.(Ja.voidEF t =_ret a A (p € k a)) V ((t € diverges) At € p)) € w

Both definitions are similar to the definitions provided for IDSpec. The implementation of ret a
contains all predicates that accept computations that terminate with the value a. The implementation
of bind also closely mirrors the implementation for IDSpec. Just like before, the bind w k specification
tests a predicate over Delay B, p, by constructing a new predicate over Delay A and testing its
inclusion in w. This new predicate is the disjunction of two smaller predicates. The left half handles
convergent trees and corresponds closely with the original predicate in the bind definition from
IDSpec. If t converges to a value a, then it tests whether p is contained in the specification k£ a. The

right half handles diverge trees. If ¢ diverges, we test if p contains the unique divergent tree spin.
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This can be thought of as a safe cast of ¢ from Delay A to Delay B. This is allowed because divergent
computations have no return value, and thus the return type does not constrain their behavior.
When given this monad structure, taking set equality as the equivalence relation, DelaySpec satisfies

the monad laws.
3.3.3. Specification Order

The order that gives the DelaySpec monad the full structure of a specification monad is as follows.

DelaySpec - w1 < wg := we C wy

The direction of the inequality makes sense for the same reason the direction in the IDSpec order
makes sense, as explained in Section 3.2. This refinement order satisfies the monotonicity constraint

for specification monads.
3.3.4. Effect Observation

Finally, in order to connect our notions of computation and specification, we need an effect observation
from computations to specifications. The effect observation takes a tree to the set of predicates that

accept it, exactly as the IDSpec effect observation does.

Opt:=Mptep

3.3.5. Lifting to More Effects

Following the work of Maillard, et. al. [2019], we can take this base specification monad and
apply monad transformers to yield specification monads over more expressive computation types.
The monad structure, order, and all effect observations can be lifted automatically to yield more
expressive specification types. For instance, by applying the state transformation with state type S

to DelaySpec, we obtain the type

StateDelaySpec A := (Delay (S x A) = P) — (S = P).

37



This is the type of functions from postconditions, predicates over possibly divergent computations
that produce an output state and a return value, to preconditions, predicates over input states. The
automatically generated effect observation is exactly the weakest precondition function over stateful
computations.

O©sp m := Ap s.((m s) € p)

3.4. Hoare Logic Extension

Now we will turn our attention specifically to proving specifications on stateful, possibly diverging pro-
grams. As discussed at the end of Section 3.3, we can construct the StateDelay and StateDelaySpec
monads by applying the state transformation to our base Delay and DelaySpec monads. We also
get the stateful weakest precondition observation, ©gp, for free from our approach. This provides
all the necessary tools to state the proposition Ogp - m € w, which states that a stateful, possibly

divergent computation, m of type StateDelay A, satisfies a specification, w of type StateDelaySpec

A.
3.4.1. Embedding Pre and Post Conditions

So far in this chapter, we have focused on the backwards predicate transformer category of specifica-
tions. However, these specifications don’t directly give us the tools to write intuitive specifications.
For example, we often want to write specifications in terms of pre- and post-conditions. As shown
by Maillard et al. (2019), the backwards predicate transformers are expressive enough to encode such
specifications. The following encoding function maps pre- and post-condition style specifications

over stateful, possibly divergent computations to the StateDelaySpec monad.

encode : (S — P) — (Delay(S x A) — P) — StateDelaySpec A

encode p; po = A s p. (s €pi Apo Cp)

The encode function takes in a precondition over input states, p;, and a postcondition over possibly

divergent computations that return a pair of an output state and value, p,. It produces a predicate
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over states, of type S, and output predicates, of type Delay(S x A) — P. This predicates accepts all
states, s, that are contained in the precondition, p;, and output predicates, p, that are supersets of

the postcondition, p,.

The connection between this encode function and pre- post-condition style specifications becomes
clear when placed in context with the unfolded Dijkstra monad definitions. Suppose we want to
prove Ogp - m € (encode p; p,). The following sequence of propositions are all justified either by

unfolding definitions or simply reasoning about sets and propositional logic.

©sp Fm € (encode p; p,) (3.1)

StateDelaySpec I (©gsp m) < (encode p; p,) (3.2)

StateDelaySpec - (A s p.((m s) € p)) < (A sp. s €p; Ap, C p) (3.3)
Vs p,(s € pi Apo Cp) — (m s €p) (3.4)

Vs, s € pi — (m s) € po (3.5)

The StateDelaySpec monad is also expressive enough to encode specifications that enforce the
conjunction of a list of pre- and post-condition style specifications. For each pair of pre- and
post-conditions in the list, the following specification enforces that if the precondition holds on the

input, then the postcondition holds on the output.

encode_list : ((S — P) x (Delay (S x A) — IP))* — StateDelaySpec A

encode_list conds := A s p. (V p; Do, (Pi, Do) € conds — s € p; Ap, C p)

3.4.2. Recovering Hoare Logic

Section 2.8 presents an ITrees semantics for the IMP language. The StateDelaySpec monad can
express Hoare logic specifications and all the standard Hoare logic inference rules, presented in

Figure 3.1, are valid in this encoding.

39



{PYefQ)  {Q}e{R) {PAB}a{Q)  {PA-ber{Q)
{(Pyskip{P}  {Plesssie{Q) {PHF (b) then {c1} else {c:}{Q}

{P Ab}c{P}
{Plz > a|}x:=a{P} {P}while b do ¢ done{P A —b}

Figure 3.1: (Standard) Hoare-logic rules.

Definition 11 (Hoare logic encoding). Given a command, ¢, and two predicates over states, P and
Q, the Hoare logic triple, {P}c{Q}, holds if

StateDelaySpect interp_imp [c] € encode P (At. V s,voidEF t ~_ ret (s,()) > s € Q). That
18, if the denotation of ¢ is contained in the specification defined by the precondition P and the

postcondition that asserts that any output state s is contained in Q.

Note that the postcondition in the previous definition accepts any divergent ITrees which corresponds

to the fact that Hoare logic specifications are partial correctness specifications.
3.4.3. Generalized Correctness

Classic Hoare logic deals only with partial correctness properties, which guarantee that if a program
terminates, then its output satisfies a postcondition (Hoare, 1969). Later work built on Hoare logic
dealt with total correctness properties, which guarantees that a program must terminate and that its
output satisfies a postcondition (Jung et al., 2015; Appel, 2011). This chapter provides specifications
that can reason more flexibly about termination and divergence. Some programs, like operating
systems and servers, are not supposed to terminate unless a shutdown command is given. Other
programs might be expected to diverge under certain error conditions. For instance, a programmer
may want to verify that a simple numerical program loops forever when the precondition is violated
in a specific way. Understanding specific error behavior can be useful. The DelaySpec monad,
StateDelaySpec monad, and other specification monads that come from the base DelaySpec monad
are all rich enough enough to express convergence and divergence as predicates, subsuming both

partial and total correctness.
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Consider the example program introduced in the introduction.

Definition nat_sqrt : com :=

x := 0;

while ~(x * x = y) do {
X :=x + 1;

}.

This program is intended to compute the integer square root of the value at variable y when it is a
perfect square and diverge when it is not a perfect square. We can formalize this specification with
two pairs of pre- and post-conditions. The final postcondition in this list relies on the encode_list

function defined in Section 3.4.1.

prel := \s. is_square (get y s)
postl := At. 3s. voidEF t ~_ ret (s,()) Aget r s X get x s=get y s
pre2 := As. =(is_square (get y $))

nat_sqrt_spec := encode_list [(prel,postl); (pre2,diverges)]

3.5. Interaction Tree Traces

As discussed in Section 3.1, not all programming languages can be easily modelled by a sequence
of monad transformers applied to the Delay monad. For example, a language with 10 would be
represented by I'Trees with uninterpreted events, not with the Delay monad. This motivates us to go
beyond transformations of DelaySpec and develop a Dijkstra monad for itree E for any arbitrary

event type family E.
3.5.1. First Attempt at Specification Monad

The natural first choice for a specification monad for arbitrary I'Trees would be a straightforward

generalization of the DelaySpec monad. However, this does not work. Consider the following flawed
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monadic structure.

ITreeSpec A := (itree E A - P) —» P
ret;s a: ITreeSpec A:= Ap. ret a € p
bind;;s w g : ITreeSpec A := Ap. (At.(Ja. t € converges a Ap € (g a))V

(t € diverges A (div_cast t) € p)) € w

This specification monad is the type family of backwards predicate transformers for ITrees, just like
DelaySpec is the type family of backwards predicate transformers for the Delay monad. The ret a
definition is identical to the definition for DelaySpec. It is the set of all predicates that contain the

ITree ret a.

Once again the bind definition is more complicated. It relies on the converges predicate, which
asserts that a value a is contained in some leaf of the tree ¢. This serves as a generalization of testing
that a tree is equivalent to ret a in the Delay monad, as is done in the left disjunct of the bind
specification in DelaySpec. It also relies on the div_cast function. The div_cast function acts as a
kind of safe type-cast for a divergent I'Tree from itree E A to itree E B. A divergent ITree of type
itree E A has no return values, only visible event nodes and silent steps of computation. This means
it has the same observable behavior as another I'Tree of type itree E A. The div_cast function
transforms it into this other, computationally identical, I'Tree. This serves as a generalization of
replacing divergent elements of the Delay monad with a properly typed spin, the only divergent
element of the Delay monad. Otherwise, the bind w g definition is the same as it was for DelaySpec.
It builds a set of predicates, p, by testing if a new predicate over ITrees is contained in w. This new
predicate contains an ITree ¢, if either ¢ can converge to a value a and the resulting specification g a

contains p, or if ¢t diverges and p contains a computationally identical tree div_cast t.

However, this definition does not satisfy the monad laws. The following predicate and specification
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provide a counterexample.

pe i itree E unit » P:= M.E -t ~_ Vis e (Azx.ret ())

w, : ITreeSpec unit := Ap. ((Vis e (Az.ret ())) € p)

We can prove that p. € w. and that p. € bind;s w. retys. According to the monad laws,
bind;s we ret;s should be equivalent to w,. Intuitively, the problem is that in designing both our
ret and bind functions, we need to choose between distinguishing trees based on their return values
and distinguishing them based on the eutt relation. Neither choice gives us the expressiveness we

need to have a useful specification monad.
3.5.2. Interaction Traces

To develop a Dijkstra monad for I'Trees with uninterpreted events, we first develop a trace model
for I'Trees. These traces are referred to as ITraces. Intuitively, I'Traces represent a single linear
path through an ITree. This path consists of a potentially infinite sequence of visible events, paired
with answers from the environment. These answers correspond to the particular branch from the
node that is taken to create this particular path. We implement ITraces as ITrees with a specially

designed event type family EvAns.

Inductive EvAns (E : Type — Type) : Type — Type :=
| evans : V(A : Type) (e : E A) (ans : A), EvAns E unit
| evempty : V(A : Type) (e : E A) (Hempty : A — void), EvAns E void.

The EvAns type family takes in a base event type family E and has two constructors. The evans
constructor packages a visible event, e : E A, with a potential answer, ans : A. The answer
type of this EvAns event is unit. This means that there is only one branch following this visible
event node. An evans event is only possibly to create when the original event’s answer type is
inhabited. The evempty constructor signifies the end of an ITrace that corresponds to an event with
an uninhabited answer type. The evempty constructor takes in an event, e : E A, and a function

from A to the empty type void, which serves as a proof that A is empty.

Definition 12 (Interaction Trace). An Interaction Trace (ITrace) of type itrace E 4 is an ITree of
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e: EA a: A
[TRACEREFPRE]

(e,evans e a) € EvRefPre E

e: EA Hempty : A -> void

[TRACEREFPOST1]
(e,evempty e Hempty) € EvRefPre E

e : EA a: A

[TRACEREFPOST?2]
(e,evans e a,a,()) € EvRefPost E

Figure 3.2: Event refinement definition

type itree (Evdns E) A.

Implementing ITraces in terms of I'Trees gives us monadic structure and equational theory for free.
These features are relevant to working with I'Traces. Notably, appending traces is simple to define in

terms of bind.

Definition 13 (ITrace append). Given two ITraces, tr1 and tre, tro appended on to trq, written as

tr1 ++ tro, is defined as bind try (Ax.trg).
Reusing bind to define trace appending makes it easy to prove key properties about it.

ITraces are a useful intermediate abstraction because they provide expressiveness between the Delay
monad and arbitrary ITrees. They can encode events and therefore interactions with the environment;

however, unlike I'Trees, they are still deterministic—an I'Trace consists of a linear sequence of events

that converges to at most one return value.
3.5.3. ITrace Refinement

This section presents a trace refinement relation expressing when an ITrace is contained in the
behavior of an I'Tree. We build the trace refinement relation using rutt, defined in Figure 2.11, along

with specialized event pre- and post-relations defined in Figure 3.2.

Definition 14 (ITrace refinement). An ITrace, tr : itrace E R, refines an [Tree, t : itree E R, if
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the following proposition holds: EvRefPre; EvRefPost t-tr ~-t. If tr refines t we write B+ tr < t.

For inhabited types, EvRefPre pairs events e : E A with event answers evans e a for any possible
answer a. For uninhabited types, EvRefPre pairs events e : E A with evidence that A is empty.
EvRefPost enforces that the only continuations that can be paired with events e and evans e a are

tt and a.

For example, consider the I'Tree Vis Get (Az.ret x). Suppose we want to prove that it is refined
by the ITrace Vis (evans Get 0) (Ax.ret 0). When comparing the events, EvRefPre checks that
the Get event in the tree matches the evans Get 0 event in the trace. Because of EvRefPost, the
refinement relation then feeds the 0 answer to the event into the continuation for the tree and
enforces stateE - ret 0 < ret 0. This does hold according to the rules of rutt. This notion of

traces and trace refinement yields a new notion of ITree equivalence.

Definition 15 (Trace equivalence). Two ITrees, t1 and ta, are trace equivalent if they are refined by

the same set of ITraces.
This notion of trace equivalence is actually equivalent to the eutt eq relation.
Theorem 2. Two [Trees are equivalent if and only if they are trace equivalent.

Knowing that these relations are equivalent ensures that this trace model of I'Trees captures all

essential information about ITrees.

We provided verified reasoning principles relating I'Traces and I'Trees through this refinement relation.
For example, the following theorem allows us to take an ITrace that refines a bind ITree, and

decompose it into two parts, one which refines the head, and one which refines the continuation.

Theorem 3 (Refinement inversion for bind). Given an [Tree, t, a continuation f, and an ITrace, tr,
such that E - tr < bind t f, tr can be decomposed into another [Trace, tr', and a trace continuation,

g, such that E+tr' <t, andVa, EFga < f a, and E* tr ~_ bind tr' g.
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3.6. ITree Trace Specifications

This section presents a specification monad for ITrees based on the previously introduced ITraces
and the inductive IO specification monad presented in Maillard et al. (2019). We begin by creating
a straightforward adaptation of the inductive 1O specification monad for reasoning about ITrees that
terminate. This specification monad will be based on ITraces and will serve to introduce key ideas

that underly the specification monad for all ITrees.

Once again, the specification monad is going to be a collection of backwards predicate transformers.
These specification monads reason about ITrees in terms of paths through the tree structure. The
preconditions reason about the path taken through the ITree so far. And the postconditions reason
about the total path taken through the I'Tree. These paths, which also serve as a log of interactions

with the environment, can be expressed as ITraces.

Definition 16 (Event logs). Given an event type family E, the type of event logs over E, log E

contains the convergent elements of itrace E unit.

Using these event logs, we can formalize a specification monad for terminating ITrees.

TraceSpecInd A := (log Ex A —P) — log E— P
retis; a = Ap l. ((I,a) € p)

bindis; w g := Ap L.>((A',a). ((p,1') € (g a), 1) € w))

The specification monad TraceSpecInd is a backwards predicate transformer. The precondition
is a predicate over event logs, representing the previous interactions with the environment. The
postcondition is a predicate over event logs, representing future interactions with the environment, and
output values. Structurally, these backwards predicate transformers are similar to state backwards

predicate transformers where the event logs are the state.

The ret a specification contains postconditions p paired with input logs [ such that p contains (,a).

This maps postconditions, p, to the set of input logs where,if the computation immediately halts
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and returns a it will be accepted in p.

The bind w ¢ closely mirrors the bind specification presented in Section 3.2. It takes in a post-
condition, p, and an input log, [, creates a new postcondition based on g, and tests if this new
postcondition along with the input log is contained in w. This new postcondition takes in an output
log, I, and a return value, a, and tests if the pair (p,!’) is in the specification g a. This complicated
definition will be justified by the fact that the resulting final Dijkstra monad for ITrees satisfies all

the relevant laws.

To go from TraceSpecInd to a specification monad suitable for reasoning about possibly divergent
ITrees, we need to change the postconditions to reason about potentially infinite sequences of
interactions with the environment. This is accomplished simply by replacing predicates over
log E x A with itrace E A. From there, we need to augment the definitions of ret and bind to

handle potentially infinite [Traces in the postconditions.

TraceSpec A := (itrace EA — P) — log E— P
retys a = Ap L. (I ++ ret a) € p)
bindis w g := Ap L.((Mtr. (A a, EFtr =~ '+ ret a A (p,I') € (g a)

diverges tr A (div_cast tr € p))), 1) € w)

The ret;s a specification contains all postconditions, p, and input logs, [, such that p contains
I ++ ret a. Much like with the TraceSpecInd definition, this maps postconditions, p, to the set of

input logs where,if the computation immediately halts and returns a it will be accepted in p.

The bind;s w g specification generalizes the TraceSpecInd definition much like the DelaySpec
definition generalizes the IDSpec definition. It maps postconditions, p, to the set of input logs,
[, such that [ paired with a new postcondition computed using ¢ is contained in w. This new
postcondition accepts two kinds of I'Traces: convergent I'Traces which can be decomposed into an

event log I’ followed by a return value a, where p paired with [’ is contained in the specification g a;
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and divergent traces which have the same visible behavior as traces contained in p.

Theorem 4. TraceSpec is a valid specification monad.

Given the TraceSpec specification monad, all that remains to define a Dijkstra monad is a valid
effect observation. The choice of the effect observation follows from the intuition that the precon-
ditions reason about the interactions with the environment that have already taken place and the

postconditions reason about the total sequence of interactions with the environment.

O t:=AplNtr. EFtr <t— (I++tr)€p

The ©,; effect observation takes an ITree, t, and a postcondition, p, and maps it to the set of input
logs, I, such that for any trace through ¢, tr, p contains [ -+ ¢r. The postcondition needs to accept

the full sequence of interactions consisting of the input log followed by any valid trace through ¢.

Theorem 5. Oy is a valid effect observation from ITrees to the TraceSpec monad. Futhermore,
the computational monad, ITrees, specification monad, TraceSpec, and the effect observation, Oy,

form a valid Dijkstra monad.
3.7. Trace Specification Examples

This section presents two examples of using trace specifications for programs with interactions with

their environments.
3.7.1. Example with IO

We first demonstrate how to use the TraceSpec monad on a simple example. Recall the nondeterminism

example presented in Section 3.1, which is presented here as an ITree.

queryUntilFalse : itree NonDet unit :=
iter (A x. bind (trigger Decide))

(A b. if b then ret (inl ()) else ret (inr ())) ().

This computation executes a loop in which a nondeterministic choice determines whether the loop
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will perform another iteration or will terminate. As discussed in Chapter 2, the inl values represent
continuation signals for iter loops, and the inr values represent halting signals. The set of traces
that refine this computation contains convergent traces which have a finite sequence of Decide
events answered with true terminated by a Decide event answered with false, and divergent traces
with an infinite sequence of Decide events answered with true. This behavior can be encoded in

TraceSpec with little overhead.
3.7.2. Predicates over ITraces

ITraces can be viewed as a kind of potentially infinite stream and benefit from many predicates
typically used to reason about streams. For example, we can define a predicate that enforces some

constraint on all elements of an ITrace.

Definition 17 (Trace forall predicate). Given a predicate over events, pg of type VA. E A — A — P,
and a predicate over return values, pr, the trace forall predicate, written as traceForall pgp pr
contains precisely the ITraces whose events and recorded answers each satisfy pg and whose return

value, if they converge, satisfies pg.

To encode the behavior of the convergent traces, we also need a slightly different specification which

relies on two predicates over events, one for the final event in the trace and one for every prior event.

Definition 18 (Trace all but final event predicate). Given two predicates over events, pg and pgp
of type VA. E A — A — P, and a predicate over return values, pgr, the trace all but final event
predicate, written as allButFinal pg ppr pr, contains precisely the converge ITraces where all
but the final event and recorded answer in the trace satisfy pg, the final event and recorded answer

satisfies pgpr, and the return value satisfies pg.
3.7.3. Encoding Simple Specifications

As previously discussed, backwards predicate transformers are very expressive but don’t have the
structure we typically associate with specifications. So it is useful to write an encoding function

from pre- and post-condition style specifications to TraceSpec.
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queryUntilFalse_pre : log NonDet — P := A 1. 1 = nil

queryUntilFalse_post_trace : itrace NonDet unit — P :=
allButFinal (A e. e = evans Decide true)
(A e. e = evans Decide false) T
queryUntilFalse_post : itrace NonDet unit — P :=
A tr.
(tr € diverges —
tr € traceForall (A e. e = evans Decide true) T) A

(tr € converges () —
tr € queryUntilFalse_post_trace)

Figure 3.3: Predicates used to define queryUntilFalse specification

encode_ts : (log E — P) — (itrace E A — P) — TraceSpec A

encode_ts p; po == Ap l. L € p; A (Vtr.(l ++ tr) € po — (I ++ tr) € p)

With these tools in place, we can define the specification of our example. This specification relies on
predicates defined in Figure 3.3. The properties we want to verify about the traces only actually
hold on the whole trace when given specific initial logs. For this specification, we choose to enforce
that the initial log is empty. Then we can constrain the rest of the behavior in the postcondition,
forcing convergent traces to have a sequence of true decisions terminating with a single false and

forcing divergent traces to only have true decisions.

queryUntilFalse_spec : TraceSpec NonDet unit :=

encode_ts queryUntilFalse_pre queryUntilFalse_post

The proof that this program satisfies its specification is straightforward. For the divergent case, it
proceeds by simple coinduction. For the convergent case, it proceeds by induction on the evidence of

convergence.
3.7.4. Example with IO and State

Just like with DelaySpec, we can use the state monad transformer to create a specification monad for

the state transform of the I'Tree monad, stateful computations which return I'Trees. This specification
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monad is sufficient for specifying programs with IO and state events.

Consider a program that begins by prompting the user to provide a natural number n, and then
enters an infinite loop to print all of the multiples of n starting with 0. Let us assume we have an
IMP-like programming language with added Input and Output constructs (on the left below). Let us
also assume we have corresponding events to represent this program as an ITree (on the right). We

omit the definition of these events types.

x := Input; a <« Input; Store x a;

while true do { iter (fun _ =
Output x; b <« Load y; Output y;
yi=x+y a <« Load x; Store y (x + y))

3 0

We can once again develop an encoding of pre- and post-conditions for this monad, and encode
the pairs as elements of the specification monad. Both the pre- and postcondition types and the
encoding function are nearly identical to the ones introduced earlier. The post condition we want
to prove that this program satisfies is that the final trace gets an Input event that evaluates to
some number n, and then has a stream of Output events that print the multiples of n in order. It is

straightforward to define this trace coinductively.

mults_of _n_from_m : N — N — itrace I0 unit :=
cofix £f n m. Vis (evans (Output m) tt) (A x. £ n (n + m))

mults_of_n : N — itrace IO unit := A b. mults_of_n_from_m n O

From there it is straightforward to define the pre- and postconditions.

pre_mult := A 1 s. 1 = nil A get y s =0

post_mult := X tr. I n k. IOk Vis (evans Input n) k~_mults_of_n n

With all of this in place, we automatically generate a verification condition and prove the specification

holds using coinduction.
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CHAPTER 4

Semantics For Noninterference Using Interaction Trees

This chapter was previously published as Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch,
and Steve Zdancewic. Semantics for Noninterference with Interaction Trees. In Karim Ali and Guido
Salvaneschi, editors, 37th European Conference on Object-Oriented Programming (ECOOP 2023),
volume 263 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1-29:29, Dagstuhl,
Germany, 2023b. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. ISBN 978-3-95977-281-5. doi:
10.4230/LIPIcs. ECOOP.2023.29. URL https://drops.dagstuhl.de/opus/volltexte /2023 /18222. I was

the primary author and did most of the research.
4.1. Introduction

Information-flow properties state that programs respect the information-security policies of their
inputs . For instance, noninterference—the most basic information-flow property—states that
secret data cannot influence publicly observable behavior. There are many languages designed to
enforce information-flow properties, guaranteeing that programs treat their sensitive inputs correctly

(Pottier and Simonet, 2003; Hritcu et al., 2013; Magrino et al., 2016; Polikarpova et al., 2020).

Information-flow properties state that programs respect the information-security policies of their
inputs . For instance, noninterference—the most basic information-flow property—states that
secret data cannot influence publicly observable behavior. There are many languages designed to
enforce information-flow properties, guaranteeing that programs treat their sensitive inputs correctly
(e.g., Pottier and Simonet, 2003; Magrino et al., 2016; Polikarpova et al., 2020). The importance
of information-security properties has increasingly led to verification efforts for such languages
and systems (Jia and Zdancewic, 2009; Azevedo de Amorim et al., 2014). These efforts, however,
are mostly limited to source-level guarantees for a single language. For security guarantees to be

meaningful, the entire language toolchain must support them.

Verifying a toolchain requires more than just certifying the guarantees for a single language design.
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Language toolchains must reason about multiple interacting languages. At the source level, programs
are often written in diverse languages that interact by embedding one language inside another. For
instance, C programs often include embedded assembly code. Toolchains also include compilers that

transform code, again requiring cross-language reasoning.

The complexity of multi-language settings makes the already-fraught choice of language represen-
tation even more complicated. For instance, much prior work either uses operational semantics
defined as relations on syntax or uses trace models defined as predicates over lists or streams of
observations (Plotkin, 1981; Leroy, 2009; Jung et al., 2015). Such definitions often require auxiliary
constructs, like program counters or evaluation contexts, that make proofs brittle and hard to com-
pose. Unfortunately, these constructs often require different representations in different languages,

seriously complicating the task of reasoning about cross-language security.

Interaction Trees (ITrees) (Xia et al., 2020; Zakowski et al., 2021b) provide an alternative: a runnable
denotational semantics for effectful, potentially-nonterminating programs, with a library implemented
in Coq. ITrees can express the semantics of diverse programming language features, and thus many
different languages. This versatility makes I'Trees well-suited to cross-language reasoning (Xia et al.,

2020) and reasoning about real-world toolchains (Zakowski et al., 2021b; Koh et al., 2019).

Prior works with ITrees reason about program semantics primarily through a notion of equivalence
based on weak bisimilarity, which considers programs equivalent so long as they differ only by a
finite number of silent steps. Information-flow properties, however, require more nuanced reasoning
principles because some program behaviors are visible to an attacker while others are not. In this
chapter we introduce indistinguishability relations for ITrees to capture these intuitions. By defining
these indistinguishability relations on ITrees—that is, on a common semantic domain rather than on

syntax—we greatly simplify cross-language reasoning.

Since indistinguishability relations model the observations of an adversary, they must accurately
reflect an attacker model. That is, they must capture our intuitions about what an adversary can

and cannot see. I'Trees allow us to define indistinguishability relations parametrically over a large
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class of event signatures, giving proof engineers the ability to specify many attacker models. However,
ITrees treat one common observation specially: termination. We thus define two indistinguisha-
bility relations, corresponding to two common classes of attacker models: progress-sensitive and
progress-insensitive (Volpano et al., 1996; Volpano and Smith, 1997; Sabelfeld and Myers, 2003).
The progress-sensitive relation represents attackers who can distinguish a program that silently
diverges from both a program that eventually emits more events and one that terminates. The result
is a very strong security guarantee. Unfortunately, enforcing it usually leads to languages which
cannot express many common programming tasks. For instance, most type systems for enforcing
progress-sensitive noninterference disallow loops that depend on secret data. The progress-insensitive
relation, which represents an attacker who cannot determine if a program will make progress in the

future, is less demanding, but provides considerably less security (Askarov et al., 2008).

We add both the indistinguishability relations and a variety of metatheoretic results to the ITrees li-
brary. Constructing the relations and proving the metatheorems requires careful treatment of the
interplay between nontermination and the interactions of a program with its environment, involving
delicate mixed inductive-coinductive reasoning. However, the design of the metatheorems allows a
proof engineer to avoid manual use of coinduction entirely. Moreover, the results further connect
indistinguishability to the standard I'Trees notion of bisimilarity, providing compatibility with existing

results.

To validate our design, we verify a simple toolchain for cross-language noninterference. We use
a simple imperative source language, IMP, and a simple assembly language, AsSM. IMP includes
exceptions and embedded AsM blocks in addition to standard features. We include exceptions
primarily to show how our indistinguishability semantics works with effects that may alter control
flow, which is particularly tricky for information-flow reasoning. However, this also requires us to

extend the ITrees library orthogonally to our extensions for reasoning about security.

Our toolchain includes two different type systems for IMP and a complier from IMP to AsMm.
One type system guarantees progress-sensitive noninterference, and the other progress-insensitive

noninterference. In addition to standard information flow typing rules, the type systems allow
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for semantic typing: any semantically secure program can be considered well typed. This added
flexibility allows programs with embedded assembly to type check without giving a type system
to AsM, and it demonstrates the powerful semantic composition of our security reasoning. We
further verify that our IMP-to-ASM compiler preserves both kinds of noninterference. Note that this
preservation does not rely on the type system, but only on semantic security. Indeed, this is required

in order to allow for security preservation with semantic typing.

Section 4.2 reviews background on information-flow control, the IMP language, and its semantics

defined with ITrees. The contributions of this chapter are as follows.
e Section 4.3 extends the ITrees library with exceptions and exception handlers.

e Section 4.4 adapts ['Trees metatheory to reason about security guarantees, defining progress-
sensitive and progress-insensitive notions of indistinguishability and using them to provide

definitions of noninterference.

e Section 4.5 uses ITrees and our new relations to prove the correctness of two standard
information-flow type systems for IMP, one progress-sensitive and one progress-insensitive.
Both systems additionally allow a “semantic typing” (Gregersen et al., 2021) escape hatch for

programs that satisfy the semantic security conditions but do not syntactically type check.

e Section 4.6 adapts Xia et al.’s [102] simple compiler from IMP to (simplified) assembly language
to include the exceptions and print effects in our variant of IMP. We then show that compiler
correctness, as defined by Xia et al., immediately implies security preservation using only the
metatheory of indistinguishability.

All definitions and theorems described in this chapter have been formalized in Coq.

4.2. Background

This section reviews background on information-flow control, interaction trees, and IMP.
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4.2.1. Information-Flow Control

We represent information-security policies using a set of information-flow labels £ that must form a
preorder. That is, there is a reflexive, transitive relation C (pronounced “flows to”) on labels where
¢ C ¢ means that any adversary who can see information with label ¢’ can also see information with
label £. We also identify adversaries with labels. An adversary at label £ can only see information
with labels that flow to £. Information-flow systems use a variety of orderings, including simply
“public” and “secret,” subsets of permissions (Zeldovich et al., 2011), lattices over principals making
up a system (Myers and Liskov, 1998; Arden et al., 2015; Stefan et al., 2011), and orderings based

on logical implication (Polikarpova et al., 2020).

The classic information-flow security policy is noninterference: if an adversary cannot distinguish a
program’s inputs, they should not be able to distinguish its outputs or its interactions with the envi-
ronment. Because information-flow labels determine which data an adversary can observe, a semantic
version of noninterference requires a semantic model of information-flow labels. Sabelfeld and Sands
(2001) suggest modeling labels as partial equivalence relations (PERs) on terms. PERs are relations
that are symmetric and transitive, but not necessarily reflexive. PERs act like equivalence relations
on a subset of their domain. For information-flow security, such PERs are called “indistinguishability

relations.”

This model further asserts that indistinguishable programs take indistinguishable inputs to indistin-
guishable outputs. That is, related programs, applied to related inputs, produce related computations.
This closure property allows a semantic version of noninterference to be defined as self-relation of
a program. A program is related to itself—and noninterfering—if and only if, for every adversary,
given any two inputs an adversary cannot distinguish, it produces two computations that adversary

cannot distinguish.

As we will see in Section 4.4, indistinguishability gives a natural way to reason about noninterference
using [Trees. Requiring every indistinguishability relation to be a PER, however, corresponds to

strong assumptions about the adversary. In particular, it requires that the adversary be able to
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Expressions e = x|n|lete|e—e|exe

Commands c skip | z:==e | ¢1;c2 | while (e) do {c}

if (e) then {c1} else {ca2} | print(¢,e) | inline {a}
(see Section 4.6)

Inlined Assembly «

Figure 4.1: IMP syntax, where x is a variable, n is a number, and ¢ is an information-flow label.

distinguish a program that silently diverges from a program that takes arbitrarily long to produce
an observable interaction with its environment. Noninterference against this strong adversary is
known as progress-sensitive noninterference. While this strength provides more security, enforcing
progress-sensitive noninterference results in a prohibitively expensive programming model (Sec-
tion 4.5.1, Sabelfeld and Myers, 2003; Volpano and Smith, 1997). To allow for enforcement of
progress-insensitive noninterference, the indistinguishability model is often relaxed to not require
transitivity (Vassena et al., 2019; Rajani and Garg, 2018; Gregersen et al., 2021). This relaxation

makes reasoning about noninterference in programs with loops easier.
4.2.2. Semantics for Imp with Security Labels

To explore how ITrees can help us verify noninterference properties, we will use a simple imper-
ative language, IMP, as a running example and case study. Conveniently, previous work on both
ITrees (Xia et al., 2020) and noninterference (Sabelfeld and Myers, 2003) use IMP as case studies,
ensuring that the connection we make corresponds with existing tools and techniques in both domains.
Our version of IMP, presented in Figure 4.1, includes features not present in the works cited above:
the ability to print expressions to one of several output streams, and the ability to inline code from
a simple assembly language. Section 4.3 will further extend IMP to allow throwing and catching
exceptions. The output streams are indexed by information-flow labels, and we think of stream /¢ as
being visible to any adversary at or above £, but no others. Thus, printing secret information to a

public stream leaks data.

The assembly language, ASM, is a simplification of standard assembly language. We allow an infinite
number of registers, and we assume that the heap is addressed by variables, as in IMP. We do

not allow dynamic jumps, only jumps to fixed addresses. Beyond those simplifications, we include
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features similar to those in IMP: we allow printing to streams indexed by information-flow labels
and, as we show later, the AsM semantics can model uncaught exceptions, both features necessary
for correct compilation of IMP code. We discuss the syntax and semantics of ASM in more detail in

Section 4.6.

As in languages like C, embedding AsM in IMP allows developers more control over the performance
of their code. For instance, the simple compiler in Section 4.6 would compile the IMP program
y=x+1;z:=2x+2toan ASM program that loads data from x into a register twice, once for each
assignment. Since Loads are relatively expensive, when the IMP code above appears in a critical

loop a developer might replace it with the following AsM code:

START : LOAD $0 < x
ADD $0 « $0,1
STORE y < $0
ADD $0 < $0,1
STORE 2z < $0

JMP ExiT

This program starts from the START label, and terminates the program by jumping to the EXIT

label. Unlike our compiler’s output, this custom ASM only has one load instruction.

Giving semantics to IMP using ITrees requires defining events representing possible interactions
between an IMP program and its environment. IMP has three types of events: stateE for representing
interactions with the heap state, regE for representing interactions with the register state, and
printE for representing output. There are two constructors for stateE events, one for reading and

one for writing.

get : var — stateE(N) set : var - N — stateE(unit)
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‘ [e], : itree progE N‘ ‘ [c], : itree progE unit‘

[x], = trigger get(x) [skip],. = ret ()
[n], =ret n [z =¢€].=n < [e],;trigger set(x,n)
lei+ea], = x < [ei],; [print(4,e)], = n < [e], ; trigger print(¢,n)
v lea.s [e1; eall. = [eal s eall
ret (z+y) if e ifn#0
then {c1}|| =mn < [e],;then [e1],
else {ca} || . else [ca],
A_.n < [e],;

ifn#0 0
then ([c],;ret inl())
else ret inr()

[while (e) do {c}]. = iter

[inline {a}], = [a].on

Figure 4.2: Imp denotational semantics

The regE events require another two constructors, one for reading and one for writing.

getreg : reg — regE(N) setreg : reg — N — regE(unit)

There is only one constructor for printE events: print : £ — N — printE(unit).

As IMP programs can produce all three types of events, we combine them with disjoint union. The
resulting event type for IMP programs is progE = regE @ stateE @ printE. For notational simplicity,

we elide the injection operator when using these compound events.

Figure 4.2 presents the denotation of IMP using these events. Note that there are two denotation
functions: [-], for expression and [-], for commands. As expressions produce numbers and commands
have no output, [-], produces computations of type itree progE N, while -], produces computations
of type itree progkE unit. The function [-],_, gives ITree-based semantics to AsMm. Its full definition
can be found in the work of Xia et al. (2020); we discuss the modifications necessary to accommodate

our changes in Section 4.6.
The denotation for expressions is fairly straightforward, and, importantly for proofs, completely
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compositional—an expression’s meaning is constructed from that of its subexpressions. The denota-
tion of a variable is a get event, a literal n becomes ret n, and arithmetic expressions simply denote

each argument and return the resulting value using bind.

Most commands are equally simple and compositional. skip is an immediate ret. Both assignment
and print first denote the argument and then bind the result into the appropriate event. Sequencing
is implemented with bind on a unit value that we elide. Conditionals are denoted by first denoting
the condition, and then return the denotation of either the left or right command depending on the

result.

Loops are more complex and make use of the iter combinator. The combinator expects a function
that returns itree progE (unit @ unit), where a left value indicates “continue” and a right value
indicates that the loop should terminate. The function given to iter first computes the value of the
loop’s guard expression. If the value is not zero, it sequences a single denotation of the loop body
with ret inl(), indicating the loop should continue. Otherwise, if the value is zero, it signals to halt

the iteration with ret inr().
4.2.3. Handlers and Interpretations

As discussed in Chapter 2, the events in an ITree can be thought of as a kind of syntax. Even though
we give them names that suggest certain behaviors, like get and set, nothing about their structure
enforces this behavior. Consider the ITree trigger set(z,0) ; trigger get(x): while the names
suggest that the result of this get should be 0, it actually produces a tree with one branch for every
natural number. Likewise, the ITree [c], representing an IMP program c does not fully express the

behavior we would expect from ¢ because it has uninterpreted state events.

The behavior of events is determined by an event handler. For example, consider h;,.,, which uses

60



the standard monadic interpretation of state to interpret progE events:

hprog (8t () = A(r, h). Tet. (1 h, h(x))
hprog(set(z,n)) = X(r, h).ret (1, h[z — n],())

hymg(gotreg(z)) = A(r. h). xet (r,h,r())
hprog(setreg(x,n)) = A(r, h).ret (r[z — n|,h,())

hprog(print(€,n)) = A(r, h). trigger print(¢,n) ; ret (r,h,())

Any event handler can be lifted to a function from ITrees to effectful computations using the interp
function, which traverses an I'Tree, replacing each event with the effectful computation assigned by

the handler. The full semantics of an IMP program is the interpreted ITree, interp hppg [c]...
4.2.4. Inlined AsM and Undefined Behavior

Adding support for inlined AsM code introduces a new complication to the semantics of IMP:
undefined behavior. To analyze the correctness and security of a language toolchain, we need to
define the behavior of source-level programs. The semantics defined in Section 4.2.2 and Section 4.2.3
do that for IMP as long as any inlined AsM has well-defined behavior. However, consider the following

IMP program, which contains inlined AsM.

p = c;inline { START : BRzZ $0 Al A2
Al: LoaAD X +« 0
JMP  EXIT
A2: LoaD X <« 1

JMP  ExXIT }
The inlined AsM program looks at the value in register 0 and, if it is zero, jumps to address Al;

otherwise it jumps to address A2. Thus, the value of X after executing program p depends on

the value of register $0 after c is executed. However, it is not clear what the register’s value will
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be when this program is compiled and run, since reasonable compilers could use the register $0
in different ways—or not at all—to compile the IMP command c, resulting in different register
states. We thus consider inlining any ASM program that relies on the initial values of registers to be
undefined behavior. We formalize this property in Section 4.5.3. We further take the same approach

as CompCert,* and only verify the correctness and security of programs that are well-defined.
4.3. Exceptions with Interaction Trees

As mentioned in Section 4.1, we include exceptions in IMP since they are an important example of
an effect which can change the control flow. In this section, we show how to model exceptions with

ITrees by adding throw and catch constructs to IMP as follows:

Commands ¢ == --- | throw(¢) | try {c1} catch {ca2}

Note that the throw command includes an information flow label, specifying who may see the

exception.
4.3.1. Exceptions as Halting Events

We model exceptions in I'Trees as halting events. Recall from Section 2 that events create one branch
for every possible response from the system. If an event has an uninhabited response type, then
that continuation can never be run since the answer type has no values. We call such events halting

because they force the computation to stop. We formalize this with the following lemma:

Lemma 6. Suppose A is an uninhabited type and e is an event of type E A, then given any

continuations k1 and ko and any return relation R, E'+ Vis e k| =~ Vis e ko.

The continuation of a halting event cannot be run and has no effect on the computational content of the
ITree. This allows a programmer to assign such an I'Tree any desired return type without changing
its computational content. This property makes halting events useful for modeling (uncaught)
exceptions: an exception can have any type and causes computation to stop. To represent exceptions

using this strategy, we use an event type excE with only a single constructor exc : Err — excE(()

4Personal communication with Xavier Leroy.
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which takes the exception’s label and produces an event with an empty answer type. This allows us

to define [throw(¢)], = trigger exc(().
4.3.2. Catching Exceptions

Real-world languages do not just throw exceptions, they also handle them. To implement exception
handling in ITrees, we use a common monadic interpretation of exceptions: we allow programs to
return either a standard return value or an exception. Specifically, we move from an ITree of type
itree ( excE Err @ E) R to one of type itree ( excE Err & E) (Err & R) using interp to lift the

following hsz. event handler to the entire I'Tree, as described in Section 4.2.3.

hege : VA, (excE Err @ E) A — itree (excE Err @ E) (Err @ A)
hege(inl(exc(e))) := ret inl(e)

hege(inr(e)) = x < trigger inr(e);ret inr(z)

Even though the resulting I'Tree cannot have exception events, we still assign it a type that allows
them so it can cleanly compose with I'Trees that do contain exception events. This choice allows
monadic bind to apply exception handlers—which may themselves contain exception events—to any
left values (exceptions) while leaving right values (normal returns) unmodified. The result is the
following exception-handling combinator, where case k; ko chooses the continuation ky or ks if the

return value is inl or inr, respectively.

trycatch(t, k.) == interp hey t >= case k. ret

This trycatch combinator has a straightforward metatheory. In particular, we show how it interacts
with the constructors of I'Trees, allowing proof engineers to reason about trycatch without using

manual coinduction.
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Theorem 7. The trycatch operator satisfies the following equivalences:

E & trycatch(ret r,k.) ~— ret r
E F trycatch(Tau(t), k.) ~= trycatch(t,k.)
E F trycatch(Vis inr(a) k, k.) ~— Vis inr(a) Az.trycatch(k(z), k)

Et- trycatch(Vis inl(exc(e)) k, ko) ~= ke(e)

Finally, the trycatch operator provides a simple denotation of IMP’s try-catch blocks:

[try {c1} catch {c2}],. = trycatch([ei],., A_. [e2],)

4.4. Indistinguishability of Interaction Trees

To leverage the common semantic domain of ITrees to guarantee the security of a toolchain,
we define our indistinguishability relation purely semantically. Intuitively, for programs to be
indistinguishable, they must return indistinguishable results and have indistinguishable interactions

with their environments.

Since return values can be arbitrary types, we follow eutt by parameterizing indistinguishability over
a return relation R. For indistinguishability, R describes when two values appear to be the same to
the adversary. For example, consider a program that outputs a pair (a,b) where a is visible to Alice
and b is visible to Bob, but not vice versa. The values (1,1) and (1,2) are not equal, but they are
indistinguishable from Alice’s perspective, as she can only see the first element. We can represent

Alice’s view of the output with a relation Rajice defined by Rajice((a, b), (a/,b')) <= a=d'.

We could simply use eutt with a return relation R modeling indistinguishability. The resulting
relation would model an adversary who can only see some part of the program’s output, but it would
require the two programs to interact with the environment in precisely the same way. Most settings,
however, allow adversaries to see some interactions, but not others. For example, memory may be

partitioned into a protected heap the adversary can never see, and an unprotected heap that it can
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Figure 4.3: Inference rules for indistinguishability, where all events are visible

see at all times. Reasoning about security when some events are visible and others are not requires

changing eutt to account for what the adversary can observe.
4.4.1. Secure Equivalence Up-To Taus

Our indistinguishability relation is called secure equivalence up-to tau or seutt. In addition to a
return relation, seutt is also parameterized by a label £, representing what the adversary can see,
and a sensitivity function p that maps events to labels, representing who may observe which events.
Intuitively, two ITrees are related by seutt if the environment interactions appear the same to an
adversary who can see events only at or below label £, and the return values are related by R. We

write the relation as E;p Fp, £ z% to.

Notably, we base the relation on eutt, which makes it progress sensitive. Recall from Section 4.2.1
that progress-sensitive noninterference allows any adversary to determine if a program silently
diverges, and is often prohibitively expensive to enforce. We will also define pi-seutt, a progress-
insensitive version of seutt, in Section 4.4.3. The judgments take the same form, so we annotate

the turnstile with a subscript ps or pi to distinguish them visually.

For presentation, we separate the rules for seutt into three groups: rules covering returns, Taus, and
public events (Figure 4.3), rules covering secret events that do not halt the program (Figure 4.4),

and rules covering secret halting events (Figure 4.5).
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Figure 4.4: Inference rules for indistinguishability, where events are not visible but answer types are

inhabited

Public Events and Returns. When an adversary is able to see an event, indistinguishability
acts just like weak bisimulation. The rules, found in Figure 4.3, are almost identical to the rules of
eutt, but with the added requirement that any visible event be visible to the adversary. That is, we

require p(e) C ¢ in PUBVIS.

It might seem mysterious that we require the event to be visible in PUBVIS. But allowing this rule
to apply no matter the visibility would allow the adversary too much power, since they would know
that the same result is returned on both sides of the equivalence. As we will see, the rule for invisible
events is stricter. We will also see how this strictness, when proving a program p indistinguishable
from itself, corresponds to proving that the behavior of p does not differ in runs in low-equivalent
environments. If we were to allow high events in PUBVIS, this would allow our proof to only consider

the behavior of p in one environment, breaking our correspondence with information-flow security.

Private Events With Responses. When the adversary is unable to view an event, seutt cannot
act like eutt. In this case, the rules are designed to formalize two intuitions. If the computation
continues after a secret event, we should treat the event like a Tau, since the adversary cannot
observe either. If the event halts the computation, the event should be equivalent to a silently

nonterminating computation.

The rules in Figure 4.4, along with symmetric analogues of PRIVVISTAU and PRIVVISINDL, handle

the case where the event allows computation to continue—that is, the event’s answer type is inhabited.
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The first rule, PRIVVISTAU, relates a private event Vis e k with a Tau(¢). In addition to requiring
the event to be secret (p(e) £ £) and have a non-empty answer type (—empty(A)), it also requires
the continuation k produce an ITree indistinguishable from t for every possible response. This
requirement ensures that the adversary’s future observations cannot depend on the response to the
private event. Note that the requirement that A be non-empty does more than just specify when the
rule applies. Without it, a private halting event would trivially satisfy this condition, allowing it to
relate to any I'Tree with a 7 in front. Since the adversary can determine when a program has halted,
they should be able to distinguish, for example, a program that throws a private exception from a

program which, after a Tau, prints to a public channel. This rule ensures that this intuition holds.

PrIvVISINDL is analogous to TAUL, but for secret events instead of Tau nodes. This rule has the
same premises as PRIVVISTAU for the same reasons. Moreover, it only removes a node from the
head of one ITree, not both. As with the definition of seutt, TAUL, and TAUR, we therefore make
PRrRIVVISINDL inductive, not coinductive, to avoid relating a infinite stream of secret events to all

other ITrees.

Finally, PRIVVISVIS removes a private event from the head of both sides of the relation. As with
the previous rules, we require both events to be private and have non-empty answer types. This time,
we require the continuations of the two events to be indistinguishable for every possible response of
both events separately. This requirement formalizes the idea that the adversary should not be able to

distinguish the program’s behavior on any pair of secret responses.

To see the power of this rule, consider whether an adversary who can see [ but not A would find the

following ITrees indistinguishable from themselves:

tsec = < trigger get(l); tinsee = T  trigger get(l);
y < trigger get(h); y < trigger get(h);
trigger set(h,z +y) trigger set(l,z +y)

One would hope that ts.. would be indistinguishable from itself, while tiysec would not be, and indeed
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Figure 4.5: Inference rules for indistinguishability, where events are halting and not visible

that is the case. To (attempt to) prove that either tree is equivalent to itself, we walk through each
[Tree. Since [ is visible, so is get(l), so PUBVIS applies and requires only that each possible value of
x produce an ITree that is indistinguishable from itself. Because h is secret, the adversary should not
be able to observe or infer its value, so we must use PRIVVISVIS to remove get(h). PRIVVISVIS
requires that, for all possible pairs of values y1,y2, the continuations be indistinguishable. Thus
in ftsec, trigger set(h,xr + y1) must be indistinguishable from trigger set(h,x + y2). Since h is
secret, so are the set events, so PRIVVISVIS can remove them even when they differ. After removing

set, the remaining continuation always produces ret (), so RET finishes the proof.

However, in tjysec, PRIVVISVIS does not apply to the set events since [ is visible. PUBVIS only
relates ITrees starting with the same event, but set(l,x + y1) # set(l,z + y2) when y; # yo. As a
result, no rule applies after removing get(h), so the adversary can distinguish tipsec from itself. In

other words, tinsec 18, indeed, insecure.

Private Halting Events. Finally, we turn to the case where an event the adversary cannot see
halts the computation. In this case, the adversary should be unable to tell that the event took place,
and therefore should not be able to distinguish a program with a secret halt from a program that
never terminates. However, the adversary should still be able to distinguish it from any I'Tree that

contains an event the adversary can see.

This intuition means that a private halting event should not be treated like a Tau, as a private
non-halting event is, but rather should be indistinguishable from an infinite stream of Taus. We
formalize this approach with the rules presented in Figure 4.5 along with their symmetric analogues.

EMPVISTAU peels a single Tau off the right ITree, leaving the private halting event on the left
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unmodified. EMPVISVISL does the same for a private event.

There are two interesting properties about these rules. First, unlike the rules for private events and
Taus that leave one side of the equivalence unmodified, these rules are coinductive, not inductive.
This choice allows us to relate a private halting event to an entire nonterminating program, as
long as that program has no public events. Indeed, no rule allows us to remove a private halting
event, as there would be nothing left to compare. Second, EMPVISVISL has no requirement that B,
the answer type of the not-necessarily-halting event, be non-empty. This choice avoids the need
to explicitly handle the case where both ITrees contain private halts. If B is non-empty, then
EMPVISVISL treats the event as a Tau. If B is empty, then the first premise of the rule is trivially
satisfied, which is desirable, as in that case both ITrees begin with a private halt event and should

be equivalent.
4.4.2. The Metatheory of Indistinguishability

The seutt relation captures intuitions about when two [Trees are indistinguishable to some adversary,
but using it requires a delicate mix of induction and coinduction. To both demonstrate the power
of our definition and better support verification, we also develop a library of metatheory for
indistinguishability. This library supports reasoning about cross-language toolchains without the
need for explicit coinduction, as we will see when we verify the correctness of a security type system

and compiler for IMP (Sections 4.5 and 4.6, respectively).

Indistinguishability as a PER Model. Recall from Section 4.2.1 that Sabelfeld and Sands (2001)
argue for indistinguishability forming a partial equivalence relation (PER). It would be nice if seutt
always formed a PER, but because it is parameterized on an arbitrary relation for return values,
that is not always the case. Instead, we prove generalized versions of transitivity and reflexivity. In
particular, if we let R denote the reverse relation of R—that is, 7%(30, Y) é R(y,x)—then the

following theorems hold.

Theorem 8. For all R, E, p, and £, if E;plps t1 %% ta, then E;p ps ta %% t1.
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Theorem 9. If F;p -y t1 %%1 ta and E;p Fps ta %%z t3 then E;plps t %%10732 ts.

pg
Note that if R is symmetric, then R = R, and if R is transitive, then R o R C R. These properties

allow us to prove the following corollary.

Corollary 1. If R is a PER, then so is E;plps — %% — forany E, p, and £.

ITree Combinators. [Trees are often defined using the combinators from Section 2, making it
important to understand how indistinguishability interacts with those combinators. The definition
of seutt directly describes how to relate simple programs defined using only ret and trigger, but

they say nothing about larger I'Trees built using bind and iteration.

Bind allows for the sequential composition of programs. We would like indistinguishable programs ¢;
and ty followed by indistinguishable continuations k1 and ko to compose into larger indistinguishable
programs t1 >= k; and ty >= ko. The following theorem says that this result holds whenever the
relation Rq, securely relating t; and 9, puts enough constraints on their possible outputs to ensure

that k; and ko are always securely related at some relation Ro.

Theorem 10. If E;p Fps t1 %%1 to and for all values a,b, Ri(a,b) implies E; p Fps k1(a) %%2 ka(D),

then E; p bps t1 >= ki &%, to >=ky.

Iteration represents loops, which have two parts: an initial value, and a body that produces a value
from the previous value. Indistinguishable initial values paired with indistinguishable bodies produce

indistinguishable loops, as we can see in the following theorem.

Theorem 11. If Ri(a1,b1) and, for any a,b, E;p by ki(a) %iasekml Ra) ka(b) whenever Ri(a,b),

then E;pbps iter k1 ag %%2 iter k9 b;.

This rule is conceptually similar to a loop invariant from a Hoare-style logic. R is a property that
is initially true and is preserved on each iteration except the final one, while the final iteration
guarantees that R holds. The caseR(R1, R2) function lifts two relations to a single relation over

sum types such that R is applied to two left values, Ro is applied to two right values, and no other
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combination is related.

Relationship with Equivalence Up-To Taus. Recall that weak bisimulation of I'Trees requires
two ITrees to contain the same pattern of interaction with their environment. Our notion of
indistinguishability assumes that adversaries distinguish programs purely based on their interactions
with the environment. One would thus expect that combining eutt with indistinguishability should

result in indistinguishability. The following theorem shows this to be the case.

Theorem 12 (Mixed Transitivity). If both E;p Fps t1 z%l to and E F ty ~g, t3 then we can

conclude that E;p Fps t1 %%IORQ t3.

This is a very powerful theorem. In particular, many program transformations preserve equality. That
is, they take source programs with equivalent-up-to-taus I'Tree representations to target programs
with the same property. Mixed transitivity tells us that compilers built from such transformations
also preserve indistinguishability. For instance, since noninterference—the security property we are
ultimately considering—is defined as a program being indistinguishable from itself, mixed transitivity
supports a very simple proof that the compiler in Section 4.6 preserves noninterference. While this
result might be surprising, it reflects the utility of ITrees and indistinguishability. By looking at

which labels can distinguish an I'Tree from itself, we can discover where leaks are possible.
4.4.3. Progress-Insensitive Indistinguishability

The type systems that enforce progress-sensitive noninterference are extremely restrictive. Thus,
information-flow control literature mostly studies progress-insensitive type systems. These type
systems enforce noninterference against adversaries who cannot see when a program has begun
to silently loop forever. Intuitively, such adversaries believe that silently looping programs could
break out of their loops at any moment, and so do not distinguish them from programs which have

produced visible events.

In order to support such reasoning, we introduce pi-seutt, a progress-insensitive version of indistin-

guishability for I'Trees.
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Definition 19 (pi-seutt). The relation pi-seutt, the progress-insensitive version of indistinguisha-
bility, is defined by modifying the definition of seutt by completely removing the rules for halting
events (all rules in Figure 4.5) and making every other rule coinductive (this modifies TAUL and

TAUR in Figure 4.3 as well as PRIVVISINDL in Figure 4.4 and its symmetric counterpart).

This relation is strictly more permissive than seutt, since it relates every ITree to silently diverging

ITrees and private halts. These facts can be formalized in the following theorems:
Theorem 13. If E;pFps tq %% to then E;p pi th %% to.

Theorem 14. Given any [Tree t, E;p Fp;i tspin R'J% t.

Theorem 15. Given any [Tree t, if e is a halting event, then E;ptp; Vis e k %% t.

Just as with the progress-sensitive version of indistinguishability, we can show that indistinguishability
plays well with the usual I'Tree combinators. This allows us to prove ITrees indistinguishable in

many cases without resorting to hand-rolled coinduction.

Theorem 16. If E;ptp; th %%1 ty and E;p by ki(a) %%2 ko(b) whenever Rq(a,b), then E;ptp;

t1 >=k %%2 to >=ko.

Theorem 17. If Ri(a1,a2) and for any a,ad’, E; p bp; ki(a) %iaseﬂ(Rl Ra) kao(a') whenever Rq(a,a’),

then E;pbp; iter k1 aq z%Q iter k9 as9.
Moreover, mixed transitivity again holds, allowing for simple proofs of compiler safety:

Theorem 18 (Mixed Transitivity). If both E;p Fp ti m%l to and E + ty ~g, t3 then we get

E;ptpith %%10732 ts.

Progress-insensitive indistinguishability behaves differently from the progress-sensitive sibling version
in one important way: it does not form a PER. Because it relates a diverging ITree to every other
ITree, pi-seutt is not transitive. This is not surprising, since progress-insensitive indistinguishability

is not a PER (Vassena et al., 2019; Rajani and Garg, 2018; Gregersen et al., 2021). It does, however,
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retain generalized symmetry, and a weakened but still-useful version of generalized transitivity:
Theorem 19. If E;p -y 4 z% to then E;p pi to %ﬂ t1.
R

Theorem 20. If F;p Fp; t1 %%1 ta, Esp tpi to %%2 ts, and ty converges along all paths, then

E; 1% l_pi tl %%107?»2 t3.

An ITree is considered convergent if it is either a ret , a Tau followed by a convergent I'Tree, or a

non-halting event followed by a continuation that converges for any input.

Unlike progress-sensitive indistinguishability, we can easily show that loops produce no events
that are observable to some adversary at ¢ via pi-seutt. Suppose that we want to show that
iter body agy emits no events that are observable to some adversary at £. We can do so by showing
that iter body ag and ret b are indistinguishable with some return relation R. This shows that
the body of the loop both emits no observable events and, if the loop terminates, it returns a value ¢
where R(c, b). Importantly, we have not made any statement about whether the loop terminates; we
have merely said that it will not produce events, regardless of its termination behavior. We formalize

this in the following theorem:

Theorem 21. For any relation Riny, if
Rinv(ao,b) and Va, Riny(a,b) = E;ptpi body a %{eftcase('Rmv,R) ret b,
then E;p bp; iter body ag %% ret b, where the relation leftcase is defined as follows:

leftcase(R1,R2)(inl(a),b) = Ri(a,b) leftcase(R1,Ra)(inr(a),b) = Ra(a,b)

4.4.4. Noninterference and Interpretation

Recall from Section 4.2.1 that we can define noninterference using an indistinguishability relation on
programs by saying that a program is noninterfering if it is related to itself—given indistinguish-

able inputs, it will produce indistinguishable computations. We could define noninterference on
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[Trees using seutt (or pi-seutt), as they provide such indistinguishability relations by design. This

approach produces a sensible definition, but one that assumes an extremely strong adversary.

Consider the following IMP program, where the h;s have label ¢;, and the ;s have label /;:

if (hy =0) then {hg :=11} else {hy =I5}

Since the program writes only to secret variables, intuitively it seems secure. However, according to
seutt, it is not related to itself at ¢; since reading from [; and ls produce different get events with

label ¢;. All adversaries have the power to observe reads of public state, not just writes.

The visibility of public read events is not the only problem. Using just seutt also means a
computation cannot publicly depend on the result of reading a secret variable, even if a public value

were written to that variable. For instance, the following program would also be considered insecure:

h:=1; print(¢;, h)

If h cannot change between assignments, this program is intuitively secure, but seutt at ¢; requires

print(¢;, h) to produce the same output regardless of the value of h, which it clearly does not.

On uninterpreted ITrees, seutt models a system where both reads and writes are visible to anyone
who can see the variable, and the value of a secret variable may silently change between a read and
a write. This model makes perfect sense in some contexts—like distributed computation (Liu et al.,

2017)—but we usually consider weaker adversaries.

We can remove these assumptions and model a weaker adversary by interpreting state, as we discussed
in Section 4.2.3. Interpreting these programs would result in two meta-level functions (i.e., Coq
functions) which take a state as input and produce an ITree returning an output state. For example
in Section 4.2.3, we define the semantics of an IMP program c as an interpreted I'Tree—that is, as a
function from states to I'Trees—mnot as a single I'Tree with state events. We thus adjust our notions

of indistinguishability and noninterference to account for this semantic construct.
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Intuitively, we start with a family of relations R, that describes when states are indistinguishable
to an adversary at level £ and use it to define the following observational equivalence. For technical
~0

reasons, we require Rgy to be an equivalence relation at all labels. For IMP, we use a relation =

which only requires states to agree on a variable x if the label of x flows to /.

Definition 20 (Stateful Indistinguishability). Two stateful computations p1 and pa are px-statefully
indistinguishable under Rg, and R at label £ if, for every pair of states o1 and oo such that
Rsu(o1,02),

. ~t
E’p l_pl' p1 01 ~RsexR D2 02

where Rse x R((0},a1), (0h,az)) <= Rs (0, 0) and R(ar, az)

As described above, stateful indistinguishability with %% defines security against an adversary who
can observe public writes, but not secret writes or secret reads. This indistinguishability relation
leads to a much more common definition of noninterference, and it is the one we will use in our case

studies in Sections 4.5 and 4.6.

Definition 21 (Noninterference). A stateful computation is px-noninterfering with state relations
Rse and return relation R if, given any label £, 1t is px-statefully indistinguishable from itself under

state relation family Rsy and return relation R.
4.5. Security Sensitive Type Systems For Imp

To see how to use this theory of indistinguishability and ITrees, we now provide an information-security
guarantee for an example toolchain for IMP. We begin by verifying two information-flow type systems,
and proceed with a simple compiler in Section 4.6. The two notions of noninterference—progress
sensitive and progress insensitive—require slightly different type systems, so we use our I'Trees-based
semantics to formally verify that both enforce their respective notions of noninterference. As is
common in such type systems, we assume £ forms a join semilattice with a unique least element L

representing “completely public.”
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Figure 4.6: Typing rules for expressions in security-typed IMP.
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Figure 4.7: Typing rules for commands in security-typed IMP.

4.5.1. Two Type Systems

Both type systems have two typing judgments: one for expressions and one for commands. The

typing judgments for expressions take the form I' - e : £, where I' is a map from variables to

information flow labels, and ¢ is a label. The judgment says that e is well-typed and depends only

on information at or below label £. The typing rules for expressions, which are the same for both

type systems, are presented in Figure 4.6.

The typing rules for commands are presented in Figure 4.7. As these rules differ between the

progress-sensitive and progress-insensitive type systems, we annotate the turnstyles with ps for
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progress-sensitive rules, pi for progress-insensitive rules, and px for rules that are identical in both

type systems.

The typing judgments for commands take the form I'; pc b, ¢ ¢ £.;, where pc and /., are information-
flow labels. The pc label is a program-counter label that tracks the sensitivity of the control flow,
while the second label /., is an upper bound on the label of any exceptions ¢ might raise. Note that
the rules listed in Figure 4.7 do not include any way to type check an inlined AsMm program. We

address this concern in Section 4.5.3.

Program-counter labels are a standard technique to control implicit information flows—that is,
information leaked by the control flow (Denning and Denning, 1977; Sabelfeld and Myers, 2003).

For example, consider the following program where h has label ¢, and [ has label ¢; with ¢}, IZ ¢;:

if (h =0) then {l =0} else {l =1}

While [ is only ever explicitly set to constant values, its final value clearly depends on the secret h.
The pc label allows us to detect and eliminate these flows by tracking the sensitivity of the control
flow. Specifically, the IF rule requires the condition’s label to flow to the pc in each branch, and the
ASSIGN rule requires the pc to flow to the label of the variable being assigned. In the above example,
the label of the condition h = 0 is ¢, so IF requires ¢; and c2 to type check with a pc where ¢, C pc.
Since T'(1) = ¢;, ASSIGN requires pc C ¢;. Transitivity of C thus requires ¢;, C ¢;, which it does not,

so the program correctly fails to type check.

Exceptions can affect the control flow of a program, and therefore can also cause implicit flows of

information. Consider the following program.

if (h =0) then {throw(¢},)} else {skip};l:=1

Much like the previous example, this program only assigns a constant to [, yet it still leaks the value

of h. We use a standard technique (Myers, 1999; Pottier and Simonet, 2003) that relies on exception
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labels in the typing judgment. As previously mentioned, the exception label of a program c is an
upper bound on the labels of any exception ¢ might raise. To eliminate exception-based leaks, the
SEQ rule increases the pc label of the second command by the exception label of the first. The TRy
rule makes similar use of the exception label, increasing the pc in the catch block, as that command

only executes if an exception is thrown.

The SKIP rule is simple, as skip can never have an effect. PRINT produces a flow of information to
an output channel labeled ¢, so it checks that ¢/ may safely see both the expression being written

and the fact that this command executed.

The rules for while loops and throw statements are different for the progress-sensitive and progress-

insensitive type systems, so we handle them separately.

Progress-Sensitive While and Throw Rules. In a progress-sensitive setting, the adversary
can observe nontermination. As a result, a program’s termination behavior can only safely depend
on completely public information. WHILE-PS enforces this requirement in a standard, but highly
restrictive way (Volpano and Smith, 1997): the loop condition and the pc of the context must both
be the fully public label L. Moreover, any exceptions thrown in the body of the loop could also

influence termination behavior, so those must be fully public as well.

Recall from Section 4.4 that a low observer cannot distinguish between an uncaught secret exception
and an infinite loop. Thus non-public exceptions create the same implicit flows as while loops, so
THROW-PS restricts exceptions in much the same way as WHILE-PS restricts loops: everything

must be fully public.

Progress-Insensitive While and Throw Rules. In a progress-insensitive setting, the adversary
cannot see nontermination, so secrets can safely influence the termination behavior of a program.
The WHILE-PI rule therefore allows loops with any pc. Since both the loop condition and any
exceptions the loop body throws influence whether the body is run, WHILE-PI increases the pc in

the loop body by both the loop guard label and the body’s exception label.
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For the same reason, THROW-PI is more permissive than its progress-sensitive counterpart. In

particular, the label on the exception just needs to be at least as secret as the pc label.
4.5.2. Proving Security

Both type systems enforce their respective notions of noninterference (Definition 21). Unlike many
existing proofs of noninterference, our proofs using I'Trees proceed by simple induction over the syntax
of IMP. This simplicity is made possible by the combination of two facts: our IMP semantics is given
by simple induction using I'Trees combinators, and those combinators interact with indistinguishability

in predictable ways, as described by the metatheory of Section 4.4.

Type systems are inherently compositional: we are able to conclude that a program is secure knowing
nothing about subprograms other than that they also type check. However, our semantic definition of
noninterference is not fully compositional. To see this, consider the IMP program p = [ := h;throw(?).
This program updates the state in an insecure way, assigning a high-security value to a low-security
variable, and then throws a low-security exception. In fully interpreted programs, the updated state
is part of the return value, but adversaries cannot observe that return value if an exception is thrown
(see Section 4.3), making p semantically secure. However, if we catch the exception, the adversary

once again can see the effect of the assignment [ := h. Thus, p does not compose securely.

In order for our type system to enforce security compositionally, it enforces two properties beyond
noninterference. Each rules out programs which, like p above, are secure but do not compose securely.
The first describes how state and exceptions interact in a secure setting, which will rule out the
example program above. The second, called confinement, defines how effects are bound by the type

system.

Interaction of Exceptions and State. Our first goal is to semantically rule out programs like p
above, allowing us to reason compositionally about exception handlers. In order to do so, we need
to reason about what state updates are performed before an exception is thrown. However, since in
our semantics of IMP we interpret state events while leaving exceptions as I'Tree events, the result

state of an IMP program is forgotten when an exception is thrown.
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This correctly models our adversary, who cannot distinguish between private exceptions and silently
diverging programs. But in order to achieve compositionality, we need to keep information about the
final state before an exception is raised. We accomplish this with a condition on an alternative seman-
tics for IMP programs. In this semantics, exceptions are interpreted into the standard sum type rep-
resentation before state events are interpreted. This interpretation, interp hypyog (interp heze [c],.),
is a stateful function that returns a final state along with either a result of type unit or the label of an
exception. We can inspect this final state to ensure that the program always takes indistinguishable

states to indistinguishable states.

We formalize this property as follows, where the relation %‘f requires that states agree on a variable x

only when I'(z) C ¢, as in Section 4.4.4.

Definition 22 (Exceptions-and-State Property). A command c satisfies the px—exceptions-and-state
property if interp hprog (interp hege [c].) is statefully indistinguishable from itself under =~ and

T at every label £.

Note the use of T as the output relation means we ignore whether or not ¢ threw an exception, while
we still ensure that the final states are indistinguishable. Ignoring this information in this property

is acceptable because it is captured by our standard noninterference condition.

Confinement. Even with the exceptions-and-state property, implicit flows, like the motivating our

use of pc labels, can still break compositionality. Confinement fixes this.

In the typing judgment for commands, the pc and £, labels are both designed to constrain effects. If
a command type checks with pc and £, it should have no effects visible below pc and no (uncaught)
exceptions above f;. Semantically, a program has no visible effects below pc if, for any label £ where
pc I £, it is indistinguishable from skip. For any uncaught exception terminating a I'Tree, we simply
check that the exception’s label flows to f¢,. We formalize this idea into the following property

called confinement.

Definition 23 (Confinement). A command c is px-confined to pc with £, exceptions, if, for all
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labels £ such that pc IZ £, the following conditions hold.

1. c is indistinguishable from skip at £: interp hypog [c], and interp hppg [skip], are pa-statefully

indistinguishable under %% and = at £.

2. ¢ makes no modifications to the state visible at {: interp hppg (interp hese [c].) and

interp hprog (interp hege [skip],) are pa-statefully indistinguishable under T and = at {.

8. For all initial state heap states h and register states r where ¢ throws an exception, the label of

that exception flows to ley:

E + (interp hprog (interp hege [c].))(r, h) == ret (r' KW, inr(l),)) = 0., Cly

Together, these definitions restrict programs to those that compose securely, as required by the
type system. With this compositionality property, we can prove that our type system enforces the

conjunction of all three properties.

Theorem 22. If I';pc by ¢ © Loy, then c is px-noninterfering (Definition 21), satisfies the px—

exceptions-and-state property, and is pz-confined to pc with £, exceptions.
4.5.3. Semantic Typing and Inline Asm

Both type systems above enforce security, but are highly conservative. Many secure programs fail
to type check, notably including any secure program with inlined AsM. To support our goal of
cross-language security reasoning and address this concern without the need to introduce a type

system for AsM, we provide a semantic typing (Jung et al., 2015) rule.

One would hope that the three conditions discussed above would be sufficient. However, the
possibility of undefined AsMm behavior (see Section 4.2.4) necessitates an additional condition. We
thus introduce the notion of inline validity, which requires inlined ASM to depend only on the initial

heap state, not the initial register state, thereby ruling out undefined behavior.
Definition 24 (Inline Validity). An ASM program a is inline-valid if, given any two register states
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r1 and ra, and any heap states h, runs with (r1,h) and (rg, h) produce the same changes to the heap.

That is, if p = interp hprog (interp hege [af then

asm) ’

printEF p(ri, h) ~tx= p(ra, h).

Note that any AsM program that only ever reads from a register after it has written to that register
will satisfy this property. We also lift this definition to whole IMP programs by applying it separately

to each inlined AsM block.

Definition 25 (Validity). ¢ is a valid IMP program if any inlined ASM program it contains is an

inline-valid ASM program.

Including validity with our other semantic conditions is sufficient to guarantee security, so we can

safely define the following semantic typing rule.

¢ is px-noninterfering
c satisfies the px—exceptions-and-state property
c is px-confined to pc and £,

c is valid

[SEMANTIC]
s pebpg ¢ 0 Leg

Adding this new rule to both type systems allows them to reason about multi-language programs
including inline AsM and larger systems, even when the syntactic type system cannot reason about
every component. Importantly, SEMANTIC is sound from a security perspective. That is, Theorem 22

continues to hold for both extended type systems.
4.6. Preserving Noninterference Across Compilation

For a compiled language like IMP, noninterference is only part of the story. After all, rather than
run IMP code directly, programmers instead compile IMP to ASM and run the AsM. Compilation

can change programs significantly, and can introduce insecurity in the process. Thus, we need to

82



Registers roou= $0 | $1 ...

Operands o r|n

Instructions ¢ ADD 71 <= T9,0 | SUB 1] <= 19,0 | MUL 7] = 12,0

EQ T < 72,0 | LEQ 71 < 72,0 | NOT 7 < 0

MOV 71 <= T2 | LOAD r <= | STORE z < 7 | print(¢,r)

Branches b JMP A | BRZr A1 A2 | RAISE /
Blocks B = A:ig;--5in;0b
Programs P = START :41; - -;ip;b

By Bn

Figure 4.8: Secure ASM syntax where x is a variable, A is an address, n is a natural number, and /¢
is an information-flow label.

ensure that the compiler translates noninterfering IMP programs into noninterfering ASM programs.
We now turn our attention to the proof-engineering effort involved in providing such an assurance.
In particular, we show that (a) adding exceptions and information-flow labels to IMP does not
complicate the proof of compiler correctness, and (b) turning a proof of correctness into a proof of

noninterference preservation is simple using mixed transitivity (Theorem 12).

Note that, to build our compiler, we had to fix the number of information-flow labels. We thus
specialize our discussion of IMP from Section 4.5 to the two-point lattice £ = {T, L}. Using any

other finite lattice would require only minimal changes.
4.6.1. Aswm, Its Semantics, and the Compiler

Figure 4.8 presents the syntax of AsM, the simple assembly language that our compiler targets. An
AsM program is a sequence of blocks, where each block starts at some address A and consists of
a sequence of straight-line instructions followed by a single jump. The first block must be at the

special address START.

Most ASM instructions write to exactly one register, computing the written value from a combination
of other registers and integer constants. For instance, ADD $0 < $1,1 takes the value of register $1,
adds one, and stores the result in register $0. The MOV instruction copies the value of one register
into another, while LOAD and STORE move information between registers and the heap. Finally, the

PRINT instruction prints information to a stream, depending on the label /.
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Jumps are either direct jumps, conditional jumps, or exceptions. A direct jump JMP A immediately
moves execution to the beginning of the block with address A. A conditional jump BRZ A1 A2
move execution to A1 if register r contains zero and A2 otherwise. The RAISE ¢ branch raises an
exception. Note that there is no equivalent of catching an exception. We assume that ASM programs

always jump to either the address of one of the program’s blocks or a special EXIT address.

Rather than representing ASM syntax directly in our Coq code, we take a more compositional
approach and represent sub—Control-Flow Graphs (sub-CFGs). These represent the structure of part
of an AsM program. While a complete ASM program contains a unique START address, sub-CFGs
may contain multiple addresses accessible to the outside. We refer to addresses which are accessible
to the outside as input addresses. Likewise, sub-CFGs may jump to undefined addresses, whereas
complete ASM programs always jump either to a defined address or EXIT. We refer to the undefined
addresses a sub-CFG may jump to as its output addresses. Thus, a complete ASM program is a

sub-CFG with exactly one input address (START) and exactly one output address (EXIT).

Intuitively, sub-CFGs execute starting at some input address, potentially jumping internally several
times before they jump to some output address. To represent this pattern, we give sub-CFGs
semantics as functions from an address to an I'Tree that returns an address. That is, the semantics of
a sub-CFG takes as input the input address at which to start executing, and produces an ITree that
returns the output address the program jumps to. This structure is due to Xia et al. (2020), and

their semantics needed only minor changes to accommodate printing and exception-throwing.

In Xia et al.’s original compiler, IMP code always mapped to complete AsSM programs. However,
to accommodate exception throwing, our compiler has an extra step of indirection. We map IMpP
programs to sub-CFGs with exactly one input address but three output addresses. The first represents
EXIT, as in a complete ASM program, while the second two represent the location of exception
handler code. Thus, we compile throw(¢) to a jump to the second address if £ = L and the third
address if £ = T. To compile a try-catch command, we place one copy of the handler at the second
address and a second copy at the third address. That means any exception will jump to the handler

code, regardless of the label of the exception, matching the semantics we gave IMP in Section 4.3.
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Note that we still need separate addresses for each label to properly compile uncaught exceptions.

For inlined AsM code, we would hope to include it in the compiled code directly with no changes.
Unfortunately, if inlined AsM throws an exception with a RAISE instruction, the surrounding IMP
code can catch it, but embedding the RAISE unmodified in the compiled output would render the
exception uncatchable. To support catching these exceptions, we process inlined ASM to replace
RAISE instructions with jumps to the appropriate address. This change causes the inlined exception

to properly jump to the handler code.

While the infrastructure described above translates IMP code into sub-CFGs, the end goal of our
compiler is to translate complete IMP programs into complete ASM programs. The final step uses
the two output addresses for exceptions by linking the sub-CFG of the complete IMP program with
two different handlers. The low-security exception handler raises a low-security exception, while the
high-security exception handler raises a high-security exception. Thus, any IMP code that raises an
exception compiles to a complete ASM program that raises that same exception, while IMP code

that catches an exception compiles to a complete ASM program with equivalent control flow.
4.6.2. Compiler Correctness

We adapt Xia et al.’s [2020] proof of compiler correctness to account for the modifications we have
made to IMP and AsM. We formalize correctness by comparing the source and the target programs—
after interpretation—using weak bisimilarity. Intuitively, two stateful programs are weakly bisimilar
if, whenever they are given related start states, the resulting [Trees are weakly bisimilar. We use a
return relation Repy. Renv ignores the register files and compares heaps using a relation =2, which
ensures that they map equal variables to equal values. We can now state the correctness theorem for

the compile function.

Theorem 23. For any initial heap states hi, ho such that h1 = ho, any register states r1,73, and a

valid IMP command c, the following equation holds

excE® printE b interp hiyy [c]. (r1,h1) =r.,, interp hesnm [compile(c)],, (72,h2)
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where Renv((_7h’17_)) (_7h’27_)) <~ hl = h2~

Notably, the changes necessary to adapt Xia et al.’s [2020] proof of correctness to our modified
compiler are small and isolated. Most cases of the inductive proof, corresponding to existing language
features, needed only cosmetic changes. The new language features required new, but conceptually

uninteresting, cases.
4.6.3. Compiler Security

We finally turn to our ultimate goal: proving that our compiler preserves security. There are two
important notions of security for our compiler, both of which require cross-language reasoning. The
first is that secure source programs are indistinguishable—by all adversaries—f{rom target programs.
This property directly relates an IMP program to an AsM program. The second is that the compiler
preserves noninterference. While noninterference itself is a property of a single program, preserving
noninterference is a property of a translation between two languages, which requires cross-language

reasoning.

In order to formalize the idea of a secure IMP program being indistinguishable from its compilation,
we need to compare these programs, even though they come from different languages. Because we
defined seutt purely semantically, we can use it as easily as if we were comparing programs in the
same language. We use the return relation Rfﬁ, which again ignores the register file and ensures that

they map equal visible variables to equal values. The theorem then takes the following form.

Theorem 24. For any valid IMP program c, if interp hprg [c]. is noninterfering with state relation
R% and return relation =, and if ¢ is a valid IMP program, then the following seutt equation holds

or any label £, arbitrary register states r1,r2 and heap states hi, ho suc at h1 =% ho.
y label ¢ bitrary register stat dh tates hy, h h that hy =4 h

excE @ printE bp, interp hynog [c]. (71, h1) %%€ interp hprg [compile(c)] g, (72, h2)

Our second theorem is simply that our compiler takes noninterfering IMP programs to noninterfering

ASM programs.

86



Theorem 25 (Noninterference Preservation). For a valid IMP program c, if interp hyrg [c], is
noninterfering with state relations Rf@ and return relation =, then the same holds for its compilation.

That is, interp hyry [compile(c)],,, is noninterfering with RY and =. This result holds for both

progress-sensitive and progress-insensitive noninterference.

Notably, the proofs of both theorems follows directly from Theorem 23 and mixed transitivity,

showing the utility of mixed transitivity for cross-language security reasoning.
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CHAPTER 5

Interaction Tree Specifications

This chapter was previously published as Lucas Silver, Eddy Westbrook, Matthew Yacavone, and
Ryan Scott. Interaction Tree Specifi- cations: A Framework for Specifying Recursive, Effectful
Computations That Supports Auto- Active Verification. In Karim Ali and Guido Salvaneschi,
editors, 37th European Conference on Object-Oriented Programming (ECOOP 2023), volume
263 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1-30:26, Dagstuhl,
Germany, 2023c. Schloss Dagstuhl — Leibniz- Zentrum fiir Informatik. ISBN 978-3-95977-281-5. doi:
10.4230/LIPIcs. ECOOP.2023.30. URL https://drops.dagstuhl.de/opus/volltexte/2023/18223. 1 was

the primary author and did most of the research.
5.1. Introduction

It is particularly difficult to reason about low-level code that contains complicated manipula-
tions of pointer structures on the heap, as is common in languages like C, C++, and LLVM.
Recently, researchers have tackled this problem using the observation that programs that are well-
typed in a memory-safe, Rust-like type system are basically functional programs (He et al., 2021;
Matsushita et al., 2022, 2020; Astrauskas et al., 2019; Ho and Protzenko, 2022). That is, there exists
a program in a functional language whose behavior is equivalent to the original, heap-manipulating
program. This functional program is called a functional model. Most prior work relies only implicitly
on the functional model. In other work, such as VST (Appel, 2011), it is idiomatic for users to
invent a functional model, prove it correct with respect to the original program, and then directly
reason about the functional model. In contrast, the Heapster tool (He et al., 2021) automatically
reifies the functional models into concrete code, represented in Coq as an ITree. Proof engineers
can then verify properties about the derived functional code, and ensure those properties hold on
the original program. This chapter presents a variation of ITrees for writing specifications over this

derived functional code and shows how to reason about these specifications.

The Heapster tool consists of two components: a memory-safe type system for LLVM code, and a
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translation tool that produces an equivalent functional program from any well-typed LLVM program.
Heapster uses these components to break verification of heap manipulating programs into two phases:
a memory-safe type-checking phase that generates an ITree-based program that is equivalent to the
original program; and a behavior-verification phase that ensures that the generated program has
the correct behavior. Previous work has left open major questions about the behavior verification
phase, namely, what should the language of specifications be and how do we actually prove that the

programs satisfy the specifications.

This work answers these questions by developing a logic well-suited to reasoning about the programs
output by Heapster, as well as tools to work with these logical formulae. Taken together, the
Heapster tool and this work form a two-step pipeline for verifying low-level, heap manipulating
programs. Heapster transforms low-level, heap manipulating programs into equivalent functional
programs. This chapter presents techniques to write and prove specifications over the resulting
functional programs. Alongside Heapster, these techniques form a pipeline for verifying low-level,

heap manipulating programs.

In this work, we present interaction tree specifications, or I'Tree specifications. ITree specifications are
an auto-active verification framework for programs based on ITrees. Auto-active verification is a
verification technique that merges user input and automated reasoning to leverage the benefits of
each. ITree specifications are designed to be able to write and verify specifications about the output

programs of the Heapster translation tool, which are written in terms of I'Trees.

The main body of work that takes on the task of verifying monadic programs is the Dijkstra
monad literature (Maillard et al., 2019; Swamy et al., 2013; Ahman et al., 2017; Swamy et al., 2016).
However, most of the Dijkstra monad literature cannot handle the kinds of termination sensitive
specifications that we need. These papers either assume a strongly normalizing language, or handle
only partial specifications. The exception to this is the work presented in Chapter 3. However,
while that work does have a rich enough specification language for our goals, it has two significant
shortcomings. First, the work provides no reasoning principles for arbitrary recursive specifications.

Second, the work does not attempt to automate the verification of these specifications. This chapter
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accomplishes both of these goals.

This work is based on the idea of augmenting I'Trees with operations for logical quantifiers. We show

that this idea leads to a language of specifications that is:
e easy to read, because the specifications are simply programs annotated with logical quantifiers,

e capable of encoding recursive specifications, because the underlying computational language

has a powerful recursion operator, and

e amenable to auto-active verification, because specifications are syntactic constructs enabling

syntax-directed inference rules.

ITrees represent computations as potentially infinite trees whose nodes are labelled with events.
Events are syntactic representations of computational effects, like raising an error, or sending data
from a server. ITrees can be used to represent the semantics of recursive, monadic, interactive
programs. ITree specifications are I'Trees enriched with events for logical quantifiers. This language
of specifications has the capability to express purely executable computations, abstract specifications,
and combinations of both. For example, consider the following computation server_impl for a simple

server program that sorts lists which are sent to it:

Definition server_impl : unit — itree_spec E void :=
rec_fix_spec (fun rec =

1 <« trigger rcvE;;
1ls <« sort 1;;
trigger (sendE 1s);;
rec tt

This specification is defined with rec_fix_spec, a recursion operator (defined in Section 5.4) where
applications of the rec argument correspond to recursive calls. The body of the recursive function
first calls trigger rcvE, which triggers the use of the receive event rcvE, causing the program to wait
to receive data. The list 1 that is received is then passed to the sort function, defined in Section 5.6,
which is a recursive implementation of the merge sort algorithm. Finally, the sorted list returned
by sort is sent as a response with trigger (sendE 1s), and the server program loops back to the

beginning by calling rec.
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Now, consider the following specification of the behavior of our server using a combination of

executable and abstract features:

Definition server_spec : unit — itree_spec E void :=
rec_fix_spec (fun rec _ =
1 <« trigger rcvE;;
ls « d_spec (list nat);;
assert_spec (Permutation 1 1s);;
assert_spec (sorted 1s);;
trigger (sendE 1s);;
rec tt).

This function acts mostly like server_impl but, instead of computing a sorted list, it uses the
existential quantification operation 3_spec to introduce the list value 1s, which it then asserts is a
sorted permutation of the initial list. By leaving this part of the specification abstract, it allows
the user to express that it is unimportant how the list is sorted, as long as the response is a sorted
permutation of the input list. The send and receive events, however, are left concrete, allowing the
user to specify what monadic events should be triggered in what order. This specification implicitly
defines a liveness property of the server; it will reject any program that fails to eventually perform
the next send or receive. By using a single language for programs and specifications, our approach
provides a natural way for users to control how concrete or abstract the various portions of their
specifications are. Our approach then provides auto-active tools for proving that programs refine

these specifications.

Necessary background explaining ITrees and Heapster is given in Section 5.2 and Section 5.3. The

contributions of this chapter are as follows:

e [Tree specifications, a data structure for representing specifications over monadic, recursive,

interactive programs, presented in Section 5.4

e a specification refinement relation over I'Tree specifications, along with collection of verified,

syntax-directed proof rules for refinement also presented in Section 5.4,

e tools for encoding and proving refinements involving total correctness specifications in I'Tree

specifications presented in Section 5.5,
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e an auto-active verification technique briefly discussed in Section 5.6

e an evaluation of the presented techniques in the form of verifying a collection of realistic C

functions using [Tree specifications and Heapster is presented in Section 5.6.
5.2. Interaction Trees Background

Section 5.6 evaluates the I'Tree specifications framework by using it in concert with the Heapster
translation tool to verify C code. However, the translation tool cannot target I'Trees as defined in
Chapter 2. This is due to interactions between Coq universe levels and event type families, which
are used to model recursive calls. In order to avoid this issue, we develop a variant of I'Trees that is

designed to interact differently with Coq universe levels (Coq development team, 2023).

The key difference in this variant is that event signatures are represented as types, in Type, rather
than type families, in Type — Type. This change necessitates a further change to the representation
of the response type of events. In the original definition, the response type is carried in the type of a
particular event. The event e : E A is an event with the event type signature E that has the response
type A. For the new definition, the event has a type, E, and its response type is determined by a

separately defined function, in E — Type. For ease of use, this function is provided in a type class.

This section first provides background information about universe levels in Coq and then uses that
information to show an example of code that we cannot write in the original variant of ITrees.

Finally, it introduces the new definition and demonstrates that it can handle that code example.
5.2.1. Coq Universe Levels

In Coq, there is no separation between types and expressions. Just as it contains functions of type
nat — bool, it also contains functions of type nat — Type or even Type — Type. In Coq, Type is
both a type and an expression that itself has a type. For many purposes, we can treat Type as
an inhabitant of Type. In fact, when run with default settings, Coq will report that Type : Type.
However, this is a simplification of the actual behavior of the type system. Type theories where Type

is in Type are inconsistent due to Girards Paradox (Coquand, 1999).
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Type@{a} : Type@{b}

[ConT|
a< b
c:V (A: Typee{a}), ... — t argl ... argn
¢ is a constructor of t t argl ... argn : Type{b}
[QUANT]
a<bhb

Figure 5.1: Universe levels in Coq

CoInductive itree (E : Type@{a} — Type@{b}) (R : Type@{c}) : Type@{d} :=
| Ret (r : R) : itree ER

| Tau (t : itree E R) : itree E R

| Vis : V{A : Type@{a}} (e : EA) (k : A — itree E R), itree E R.

Figure 5.2: I'Tree definition with explicit universe levels

Girard’s Paradox is analogous to Russell’s Paradox in set theory. And much like with Russell’s
Paradox, type theories typically avoid Girard’s Paradox by replacing a unified type of types with
a collection of type universes, each indexed by a natural number. In Coq, these universe levels
are generated automatically during type checking. A Coq type at universe level a can be written
explicitly as Typee{a}. In this system, a type universe contains types at strictly lower universe levels.

In particular, Type@{a} : Type@{b} exactly when a < b.

Much like Russell’s Paradox, Girard’s Paradox is only possible in type theories where a type can be
defined by quantifying over a collection of types that includes itself. Universe levels are designed to
prevent users from defining such types. To this end, many typing rules in Coq contain constraints
on the universe levels. For the purposes of this chapter, we only need to focus on the constraints
generated when an inductive or coinductive type constructor quantifies over types. Figure 5.1
presents this constraint as an inference rule. We focus on this case because it applies to the original
ITrees definition, namely the Vis constructor, presented with explicit universe levels in Figure 5.2.
Given a term c which quantifies over a type A : Type@{a}, where c is a constructor for a type

t argl ... argn in type universe level b, Coq will enforce that a < b.
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Inductive addE : Type@{a} — Type@{b} :=
| add_intro (n : nat) : addE (nat — itree voidE nat).

Definition 1lift {E R}: itree voidE R — itree E R :=
(* omitted *)

Definition add (n : nat) : itree voidE (nat — itree voidE nat) :=
mrec (
fun ’(add_intro n) =
match n with
| 0 = ret (fun m = ret m)
| S n = addf <« trigger (add_intro n);;
ret (fun m = fmap S (lift (addf m)))
end
) (add_intro n).

Figure 5.3: I'Tree model of addition

5.2.2. Approaching General Fixpoints with Interaction Trees

The verification framework presented in this chapter relies on a translation tool from well-typed
programs to ITrees. Modelling these well-typed programs requires modelling recursive functions
that can return functions. This section presents a concrete example of a function that can return
functions and explains why that poses problems for the I'Tree representation. The following code
implements addition by pattern matching on the first natural number to construct a function from

natural numbers to natural numbers.

fix add n.
match n with
| 0 =>Am. m

| Sn=>Am. S (add n m)

This implementation of addition begins by pattern matching on the first argument. In the zero case,
it returns the identity function. In the successor of n case, it returns a function that recurses on n
and its argument, and returns the successor of the result. In this definition, recursive calls to the
add function return a function from natural numbers to natural numbers. This is in contrast to the
typical way of defining add, where a recursive call requires both natural number inputs, and returns

the natural number output.
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Modelling code like poses a problem for the previously presented definition of I'Trees. Figure 5.2
presents the definition of ITrees with explicit universe levels. It shows that that all response types, A,
must be in universe level a and that the full I'Tree datatype, itree E R, is in universe level d. The
constraint presented in Figure 5.1 further indicates that a must be strictly less than d because the

Vis constructor quantifies over Type@{a}.

Figure 5.3 proposes a model of the previously defined addition function written in I'Trees with the
mrec combinator. It models recursive calls that return functions with the addE event. The only
constructor of addE takes in a natural number and has the response type with models possibly
divergent functions from natural numbers to natural numbers, nat — itree voidE nat. Much like
the code it models, it pattern matches on the first natural number. In the zero case, it returns a
function that returns its argument. In the successor of n case, it triggers a recursive call containing
the payload n, and binds that call to a continuation that returns a function that applies the recursive
call response to its argument, coerces the result to an I'Tree with addE events, and maps the successor

function across that ITree.

However, this code is rejected by the Coq type checker because it violates universe level constraints.
We already know that a < d because of constraints generated by the Vis constructor. Because the
recursive calls all have type addE (nat — itree voidE nat), we have the additional constraint that
d< a. We use a type of functions into I'Trees as the response type of addE. This type of functions
lives at the same universe level as I'Trees and is used in a context that requires it to be coerced to

Type@{a}. And there is no way to satisfy the system of inequalities d< a < d.

In the following section, I present a version of I'Trees that does not share this inconsistency.
5.2.3. Alternate Definition of Interaction Trees

Like the definition presented in Chapter 2, this alternate definition of ITrees represents programs as
potentially infinite trees whose nodes are labelled with events. However, in this definition, events
are all inhabitants of a single event type E, rather than a type family. The response type, which

determines the type that indexes branches of this event node , is determined by a separately defined

95



Class EncodingType (E : Type@{a}) : Type :=
response_type : E — Type@{al}.

CoInductive itree (E : Type@{a}) “{EncodingType E} (R : Type@{a}) : Type@{a} :=
| Ret (r : R)
| Tau (t : itree E R)
| Vis (e : E) (k : response_type e — itree E R).

Figure 5.4: Alternate ITrees definition

function. The alternate definition of I'Trees is presented in Figure 5.4. The EncodingType typeclass
contains a function, response_type, from the type of events into Type. ITrees are defined for any
event type which has an EncodingType instance, and uses the response_type function to compute the
input type of the continuation k in the Vis constructor. We leverage the EncodingType typeclass in
order to avoid explicitly including a particular response_type function every time we reference the

itree type.

This definition avoids any quantification over types, replacing them with applications of the
response_type function. Figure 5.4 also includes explicit universe levels for many of the types,
which demonstrate why this definition lacks the problematic universe level constraints of the original.
The definition fixes a universe level a and enforces that both the type of events, E, and the output of
the response_type function are inhabitants of the type universe level a. Because the Vis constructor
uses the response_type function to compute the input type of the continuation instead of using type
quantification, we can assign both the type of ITrees, itree E R, and the type of events, E, the same

universe level.

With this definition, we can write the code presented in Figure 5.3 with minimal modifications and
actually make it type check. This properly typed code is presented in Figure 5.5. Because the
definition is so close to the original, we can rewrite all of the combinators and metatheory presented

in Chapter 2. Key definitions referenced in the rest of this chapter are presented in Appendix A.
5.3. Functional Model Extraction with Heapster

This section introduces the Heapster tool for specification extraction. We present Heapster in order

to provide context for the evaluation of this work in Section 5.6. In the evaluation, we demonstrate
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Inductive addE : Type@{a} :=
add_intro (n : nat).

Instance addE_encoding : EncodingType addE :=
fun _ = nat — itree void nat.

Definition add (n : nat) : itree void (nat — itree void nat) :=
mrec (
fun ’(add_intro n) =
match n with
| 0 =ret (fun m = ret m)
| 8§ n = addf +« trigger (add_intro n);;
ret (fun m = fmap S (1lift (addf m)))
end
) (add_intro n).

Figure 5.5: Alternate definition of I'Tree model of addition

how effective I'Tree specifications can be when paired with a tool like Heapster. We start with a
collection of low-level, heap manipulating C programs, use Heapster to produce equivalent functional

programs, and finally use [Tree specifications to specify and verify the output programs.

There is a growing body of work (Astrauskas et al., 2019; Matsushita et al., 2020, 2022; He et al.,
2021) based on the idea that programs that satisfy memory-safe type systems like Rust can be
represented with equivalent functional programs. Rust’s pointer discipline, which ensures that all
pointers in a program are either shared read or exclusive write, allows us to reason about the effects
of pointer updates purely locally. This locality property can be used to define a pure functional

model of the behaviors of a program, which can in turn be used to verify properties of that program.

Whereas some work uses this notion of a functional model implicitly, functional model extraction is
the idea that the functional model can be extracted automatically as an artifact that can be used
for verification. Functional model extraction separates verification into two phases: a type-checking
phase, where the functions in a program are type-checked against user-specified memory-safe types;
and a behavior verification phase, where the user verifies the functional models that are extracted
from this type-checking process. The Heapster tool (He et al., 2021) is an implementation of the idea
of functional model extraction. Heapster provides a memory-safe, Rust-like type system for LLVM,
along with a typechecker. Heapster also provides a translation from well-typed LLVM programs to

monadic, recursive, interactive programs, modeled with ITrees, that describe a behavioral model
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Value Types T == bvn | llvmptrn | ---

Expressions e == n | llvmworde | ---
RW Modality rw == W |R

Permissions 7 = ptr ((rw,e) = 7) | %72 | 71 VT
| Jx:T.7 |eqle) | p X7 | X |-

Figure 5.6: An Abbreviated Grammar of the Heapster Type System

of the original program. This translation is inspired by the Curry-Howard isomorphism. Heapster
types are essentially a form of logical propositions regarding the heap, so, by the Curry-Howard
isomorphism, it is natural to view typing derivations, a form of proof, as a program. We give a brief
overview of the Heapster type system and its functional model extraction process in this section and

illustrate it with an example.

The Heapster type system is a permission type system. Typing assertions of the form z : 7 mean
that the current function holds permissions to perform actions allowed by 7 on the value contained in
variable x. The central permission construct of Heapster is the permission to read or write a pointer
value. Like Rust, Heapster is an affine type system, meaning that the permissions held by a function
can change at different points in the function. In particular, a command can consume a permission,
preventing further commands from using that permission again. Also like Rust, Heapster allows
read-only permissions to be duplicated, allowing multiple read-only pointers to the same address,
but does not allow write permissions to be duplicated. This enforces the invariant that all pointers

are either shared read or exclusive write, a powerful property for proving memory-safety.

Figure 5.6 gives an abbreviated grammar for the Heapster type system. The value types T are
inhabited by pieces of first order data. In particular, they contain the type bv n of n-bit bitvectors
(i.e., n-bit binary values) and the type llvmptr n of n-bit LLVM pointers, among other value types
not discussed here. Heapster uses the CompCert memory model (Leroy and Blazy, 2008), where
LLVM values are either a word value or a pointer value represented as a pair of a memory region
plus an offset in that region. The expressions e include numeric literals n and applications of the

llvmword constructor of the LLVM value type to build an LLVM value from a word value.
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The first permission type in Figure 5.6, ptr ((rw,e) — 7), represents a permission to read or
write (depending on rw) a pointer at offset e. Write permission always includes read permission.
This permission also gives permission 7 to whatever value is currently pointed to by the pointer
with this permission. Permission type 7 * 7 is the separating conjunction of 7 and 7o, giving
all of the permissions granted by 71 or 79, where 71 and 7o contain no overlapping permissions.
Permission type 71 V 7o is the disjunction of 7 and 79, which either grants permissions 71 or 7o. The
existential permission dx : T.7 gives permission 7 for some value x of value type T. The equality
permission eq(e) states that a value is known to be equal to an expression e. This can be viewed as
a permission to assume the given value equals e. Finally, ;4 X.7 is the least fixed-point permission,
where permission variable X is bound in 7. This satisfies the fixed-point property, that p X. 7 is

equivalent to [u X. 7/X]t.

As a simple example, the user can define the Heapster type

int64 = Jx : bv 64. eq(llvmword z)

This Heapster type describes an LLVM word value, i.e., an LLVM value that equals llvmword x for

some bitvector x.

As a slightly more involved example, consider the following definition of a linked list structure in C:

typedef struct 1list64_t { int64_t data;

struct list64_t *next; } list64_t;

A C value of type 1list64_t* represents a list, where a NULL pointer represents the empty list and
a non-NULL pointer to a 1ist64_t struct represents a list whose head is the 64-integer contained in

the data field and whose tail is given by the next field.

The following Heapster type describes this linked list structure:

list64(rw) = p X. eq(llvmword 0) V (ptr ((rw,0) — int64) * ptr ((rw,8) — X))
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int64_t is_elem (int64_t x, list64_t *1) {
x:int64, 1:list64(R)
x:int64, 1:eq(llvmword 0) OR x:int64,1:ptr ((R,0) — int64) * ptr ((R,8) > list64(R))
if (1 == NULL) {
x:int64, 1:eq(llvmword 0)

return O;

} else {
x:int64, 1:ptr ((R,0) — int64) x ptr ((R,8) — list64(R))
if (1->data == x) { return 1; }
else {

list64_t *12 = 1l->next;
x:int64, 1:ptr ((R,0) — int64) % ptr ((R,8) — eq(12)),12:list64(R)

return is_elem (x, 12);

133

Figure 5.7: Type-checking the is_elem Function Against Type x:int64,1:list64(R) —o r:int64

The list64(rw) type is parameterized by a read-write modality rw, which says whether it describes a
read-only or read-write pointer to a linked list. The permission states that the value it applies to
either equals the NULL pointer, represented as llvmword 0, or points at offset 0 to a 64-bit integer
and at offset 8° to an LLVM value that itself recursively satisfies the list64(rw) permission. Note

that the fact that it is a least fixed-point implicitly requires the list to be loop-free.

Figure 5.7 illustrates the process of Heapster type-checking on a simple function is_elem that checks
if 64-bit integer x is in the linked list 1. Note that Heapster in fact operates on the LLVM code that
results from compiling this C code, but the type-checking is easier to visualize on the C code rather
than looking at its corresponding LLVM. Ignoring the Heapster types for the moment, which are
displayed with a grey background in the figure, is_elem first checks if 1 is NULL, and if so returns 0
to indicate that the check has failed. If not, it checks if the head of the list in 1->data equals x, and

if so, returns 1. Otherwise, it recurses on the tail 1->next.

The Heapster permissions for this function are

x:int64, 1:list64(R) —o r:int64

®We assume a 64-bit architecture, so offset 8 references the second value of a C struct.
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The lollipop symbol, —o, is used to write Heapster function types. This type means that input x is a

64-bit integer and 1 is a read-only linked list pointer and the return value r is a 64-bit integer value.

To type-check is_elem, Heapster starts by assuming the input types for the arguments. This is
displayed in the first grey box of Figure 5.7. In order to type-check the NULL comparison on 1,
Heapster must first unfold the recursive permission on 1 and then eliminate the resulting disjunctive
permission. This latter step results in Heapster type-checking the remaining code twice, once for
each branch of the disjunct. More specifically, the remaining code is type-checked once under the
assumption that 1 equals NULL and once under the assumption that it points to a valid 1ist64_t
struct. In the first case, the NULL check is guaranteed to succeed, and so the if branch is taken
with those permissions, while in the second, the NULL check is guaranteed to fail, so the else

branch is taken.

In the if branch, the value 0 is returned. Heapster determines that this value satisfies the required
output permission int64. In the else branch, 1->data is read, by dereferencing 1 at offset 0. This
is allowed by the permissions on 1 at this point in the code. If the resulting value equals x, then
1 is returned, which also satisfies the output permission int64. Otherwise, 1->next is read, by
dereferencing 1 at offset 0, and the result is assigned to local variable 12. This assigns list64(R)
permission to 12. The permission on offset 8 of 1 is updated to indicate that the value currently
stored there equals 12. The list64(R) permission on 12 is then used to type-check the subsequent

recursive call to is_elem.

Once a function is type-checked, Heapster performs functional model extraction to extract a pure
functional model of the function’s behavior. Functional model extraction translates permission types

to Coq types and typing derivations to Coq programs. The type translation is defined as follows:

[ptr ((rw,e) = 7)] = [7] [nxm] = [nlxlnl
[mVvm] = [n]+[r] Bz :T.7] = {«:[T] & [7]}
[eqa(e)] = unit [ X.7] = wuser-specified type A

isomorphic to [[u X.7/X]|7]
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Pointer permissions ptr ((rw,e) — 7) are translated to the result of translating the permission 7
of the value that is pointed to. This means that functional model extraction erases pointer types,
which are no longer needed in the resulting functional code. Conjuctive permissions are translated
to pairs, disjunctive permissions are translated to sums, and existential permissions are translated to
dependent pairs (using a straightforward translation interpT of value types that we omit here).
The equality type eq(e) is translated to the Coq unit type unit, meaning that the extracted model
contains no information. We already proved the equality in the typechecking phase, and we have no
use for the particular equality proof the typechecker provided. To translate a least fixed-point type

u X.7, the user specifies a type that satisfies the fixed-point equation, meaning a pair of functions

fold : [[u X.7/X]7] — [p X.7] unfold : [u X.7] — [[p X.7/X]7]

that form an isomorphism.

As an example, the translation of int64 is the Coq sigma type {x:bitvector 64 & unit}. Note
that Heapster will in fact optimize away the unnecessary unit type, yielding the type bitvector 64.
As a slightly more complex example, in order to translate the list64(rw) described above, the user

must provide a type T that is isomorphic to the type

unit + (bitvector 64 * T)

The simplest choice for T is the type 1list (bitvector 64). In this way, the imperative linked list

data structure defined above in C is translated to the pure functional list type.

Rather than defining the translation of Heapster typing derivations into Coq programs here, we
illustrate the high-level concepts with our example and refer the interested reader to He et al. (2021)
for more detail. The translation of is_elem is given as a Coq model is_elem_spec in Figure 5.8.
At the top level, this mdeol uses rec_fix_spec to define a recursive function to match the recursive

definition of is_elem. This binds a local variable rec to be used for recursive calls.

To understand the rest of the model, we step through the Heapster type-checking depicted in
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Definition is_elem_spec : bitvector 64 * list (bitvector 64) —
itree_spec E (bitvector 64) :=
rec_fix_spec (fun rec ’(x,1) =

either
unit (bitvector 64 * list (bitvector 64)) (* input types *)
(itree_spec _ (bitvector 64)) (* output type *)
(fun _ = Ret (intToBv 64 0)) (* nil case %)
(fun ’(hd,tl) = (* cons case *)
if bvEq 64 hd x then Ret (intToBv 64 1) (* return 1 4if found *)
else rec (x,tl)) (* recursive call *)
(unfoldList 1)). (* unfolded argument *)

Figure 5.8: Extracted Functional Model for is_elem

Figure 5.7. The first step of that type assignment unfolds the permission type list64(1¥) on 1. The
corresponding portion of the model is the call to unfoldList, which unfolds the input list 1 to a
sum of a unit or the head and tail of the list. The next step of the Heapster type-checking is to
eliminate the resulting disjunctive permission on 1. The corresponding portion of the model is a call
to the either sum elimination function. In the left-hand case of the disjunctive elimination, the
NULL test of the C program succeeds, and 0 is returned. Similarly, in the Coq model, the nil case

returns the 0 bitvector value.

In the right-hand case of the disjunctive elimination of the Heapster type-checking, the NULL test
fails, and so 1 is a valid pointer to a C struct with data and next fields. This is represented by
the pattern-match on the cons case in the Coq model, yielding variables hd and t1 for the head
and tail of the list. The body of this case then tests whether the head equals the input variable x,
corresponding to the x==1->data expression in the C program. If so, then the bitvector value 1 is
returned. Otherwise, the model performs a recursive call, passing the same value for x and the tail

of the input list for 1.
5.4. ITree Specifications and Refinement

In this paper, we introduce a specialization of the I'Tree data type that encodes specifications over
[Trees. To do this, we take some base event type family E, and extend it with constructors for

universal and existential quantification. This is formalized in the following definition for SpecEvent.

Inductive SpecEvent (E : Type) “{EncodingType E} : Type :=
| Spec_vis (e : E) : SpecEvent E
| Spec_V (A : type) : SpecEvent E
| Spec_3 (A : type) : SpecEvent E
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The Spec_vis constructor allows you to embed a base event e : E into the type SpecEvent E. The
Spec_V constructor signifies universal quantification, and the Spec_3 constructor signifies existential

quantification.

We define ITree specifications as the type of I'Trees with a SpecEvent as the event type.

Definition itree_spec (E : Type) “{EncodingType E} (R : Type) :=
itree (SpecEvent E) R.

Because I'Tree specifications are actually a special kind of I'Tree, they inherit all the useful metatheory
and code defined for ITrees. In particular, we can reason about them equationally with eutt, and

apply the monad functions to them.
5.4.1. ITree Specification Refinement

The notion that a program adheres to a specification is defined in terms of refinement over specifica-
tions. Refinement is the main judgment involved in using [Tree specifications, and is the primary
form of proof goal proved by the provided automation tool. Intuitively, the logical quantifier events
mean that an I'Tree specification represents a set of computations. A fully concrete I'Tree specification,
with no logical quantifier events, represents a singleton set containing a single concrete I'Tree, while a
more abstract specification might represent a larger set. The refinement relation is then defined such
that, if one ITree specification refines another, then the former represents a subset of the latter. So,
for instance, if we prove that a concrete specification refines a more abstract specification, then we
have shown that the singleton program in the set represented by the concrete specification satisfies
the specification. Note that refinement is actually a coarser relation than subset; this is discussed

later in Section 5.4.4.

The I'Tree specification refinement relation is based on the idea of refinement of logical formulae with
the eutt relation. In the refinement relation, we eliminate quantifiers in our specification logic using
quantifiers in the base logic, in this case Coq. Quantifiers on the right of a refinement get eliminated

to the corresponding Coq quantifiers, while quantifiers on the left get eliminated to the dual of the
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RPre;RPost - Vis Spec_V k Cpp t RPre;RPost - Vis Spec_V k Cpp t

Figure 5.9: Inference rules for I'Tree specifications refinement relation

corresponding Coq quantifier. This means that both a Spec_V on the right and a Spec_3 on the left
get eliminated to a Coq V. And both a Spec_3 on the right and a Spec_V on the left get eliminated to
a Coq 3. ITree specifications form a lattice with refinement serving as the preorder, Spec_V acting as
the complete meet, and Spec_3 acting as the complete join. The portions of I'Tree specifications with
computational content, including the Ret leaves, Spec_vis nodes, and silent Tau nodes, get compared

as they do in the eutt relation.

The ITree specification refinement relation shares many mechanical details with the eutt relation.
Both are defined by taking the greatest fixed point of an inductively defined relation to get a
mixture of inductive and coinductive properties. Both behave identically on Tau and Ret nodes. The
refinement relation differs in its inductive rules for eliminating logical quantifiers, and in its usage of
heterogeneous event relations to enforce pre- and post- conditions on Spec_vis events. These pre-
and post- conditions are necessary in order to give the refinement relation the flexibility needed to

state the reasoning principle for mrec.

Definition 26 (ITree Specification Refinement). Given:
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event signatures E1 and E2;

return types R1 and R2;

e a precondition relation over E1 and E2, RPre;

a postcondition relation over E1 and E2, RPost;

and a return relation over R1 and R2, RR,

refinement up to RPre, RPost and RR, a relation between itree E1 R1 and itree E2 R2, is defined

with the inference rules presented in Figure 5.9. We write this relation as RPre; RPost - t1 Cpp t2.

Several of the inference rules presesnted in Figure 5.9 work exactly like corresponding inference rules
in the rutt relation. In particular, the REFINESRET, REFINESTAU, REFINESTAUL, and REFINESTAUR
rules handle return values and Tau nodes in the standard way. The SPECVIS rule handles Spec_vis
nodes just as the rutt relation handles any event nodes. Just like RUTTVIS, SPECVIS relates Spec_vis
nodes as long as two conditions hold on the events, el and e2, and the continuations, k1 and k2.
The ITree specifications must satisfy the precondition, by having el and e2 satisfy RPre. And the
ITree specifications must satisfy the post condition by having k1 a refine k2 b, whenever a and b
are related by RPost el e2. The added complications of this rule allow us to reason about mutually
recursive functions. This rule ensure that related function outputs assume that function calls with
arguments related by the precondition return values related by the post condition when analyzing

mutually recursive functions.

Finally, we need inference rules dealing with quantifier events. This definition uses only inductive
inference rules to eliminate quantifier events. We made this choice to avoid certain peculiar issues
related to ITree specifications that consist of infinite trees of only quantifiers. Given coinductive
constructors for quantifier events, we would be able to prove that such ITree specifications both
refine and are refined by any other arbitrary ITree specification. That choice would cause certain
ITree specifications to serve as both the top and bottom elements of the refinement order. This

would serve as a counterexample to the transitivity of refinement, a desired property. The choice to
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only use inductive rules for quantifier events ensures that I'Tree specifications that consist of infinite

trees of only quantifiers cannot be related by refinement to any other I'Tree specifications.

Quantifiers on the right get directly translated into Coq level quantifiers by FORALLR and EXISTSR.
Quantifiers on the left get translated into their dual quantifier at the Coq level. Eliminating a Spec_V
on the left gives you an 3, enforced by FORALLL. Eliminating a Spec_3 on the left gives you a V,

enforced by EXISTSR.
5.4.2. Padded ITrees

Useful refinement relations should respect the eutt relation. When using I['Trees as a denotational
semantics, eutt is the basis of any program equivalence relation. Equivalent programs and specifi-
cations should not be observationally different according to the refinement relation. However, the

refines relation does not respect eutt.

We can easily demonstrate this with the following three ITree specifications.

CoFixpoint spin : itree_spec E R
CoFixpoint phil : itree_spec E R :
CoFixpoint phi2 : itree_spec E R

Tau spin.
Vis (Spec_V t) (fun _ = Tau (phil)).
Vis (Spec_V t) (fun _ = phi2).

The spin specification represents a silently diverging computation. The phil specification is an
infinite stream that alternates between Spec_V nodes and Tau constructors. The phi2 specification
is a similar I'Tree to phil that just lacks the Tau nodes. As these ITree specifications all diverge
along all paths and lack any Spec_vis nodes, the RPre, RPost, and RR relations that we choose do not
matter. Given any choice for those relations, spin refines phil as we can use the inductive refines_VL
rule to get rid of the Spec_V nodes, allowing us to match Tau nodes on both trees and apply the
coinductive refines_Tau rule. This process can be extended coinductively allowing us to construct
the refinement proof. The phi1 ITree specification is eutt to phi2, as the only difference between
the specifications is a single Tau node after every Vis_V node. However, spin does not refine phi2, as
there is no coinductive constructor that we can apply in order to write a proof for these divergent
ITree specifications. Problems like this arise with any I'Tree specifications that consist of infinitely

many quantifier nodes with nothing between them.
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padded t

[PADDEDRET] [PADDEDTAU]|
padded (ret 1) padded (Tau t)

Va,padded (k a)

[PADDEDVIS]

padded Vis e (Aa.Tau (k a))

Figure 5.10: padded Definition

Class CoveredType (A : Type) := {
encoding : type; surjection : response_type encoding — A;
surjection_correct : Va : A, Jx, surjection x = a; }.

Definition V_spec {E} Definition J_spec {E}
“{EncodingType E} “{EncodingType E}
(A:Type) “{CoveredType A} : (A:Type) “{CoveredType A} :
itree_spec E A := itree_spec E A :=
Vis (Spec_V encoding) Vis (Spec_d encoding)
(fun x = Ret (surjection x)). (fun x = Ret (surjection x)).
Definition assume_spec {E} Definition assert_spec {E}
“{EncodingType E} (P : Prop) : “{EncodingType E} (P : Prop) :
itree_spec E unit := itree_spec E unit :=
V_spec P;; Ret tt. J_spec P;; Ret tt.

Figure 5.11: Basic Specifications

To fix this problem, we restrict our focus to a subset of [Trees that does not include ones like phi2.
This is the set of padded ITrees, in which every Vis node must be immediately followed by a Tau.
We formalize this with the coinductive padded predicate, whose definition is presented in Figure 5.10.
The refinement relation does not distinguish between different I'Tree specifications that are eutt to
one another as long as they are padded. This means that can rewrite one ITree specification into

another under a refinement according to eutt as long as both are padded.

Furthermore, it is easy to take an arbitrary ITree, and turn it into a padded ITree. That is
implemented by the pad function, which corecursively adds a Tau after every Vis node. From
here, we can focus primarily on the following definition of padded_refines which pads out all I'Tree

specifications before passing them to the refines relation.

Definition 27 (Padded Refinement). Given: a precondition relation, RPre; a postcondition relation,
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CoFixpoint interp_mrec_spec {R : Type}
(bodies : V(d:D), (itree_spec (D + E)) (response_type d))
(t : itree_spec (D + E) R) : itree_spec E R :=
match t with
| Ret T = Ret r
| Tau t = Tau (interp_mrec_spec bodies t)
| Vis (Spec_V A) k = Vis (@Spec_V E _ A) (fun x : response_type (Spec_V A) = interp_mrec_spec
bodies (k x))
| Vis (Spec_d A) k = Vis (@Spec_J E _ A) (fun x = interp_mrec_spec bodies (k x))
| Vis (Spec_vis (inr e)) k = Vis (Spec_vis e) (fun x = interp_mrec_spec bodies (k x))
| Vis (Spec_vis (inl d)) k = Tau (interp_mrec_spec bodies (bind (bodies d) k))
end.

Definition mrec_spec (bodies : V(d:D), (itree_spec (D + E)) (response_type d)) (init : D) :=
interp_mrec_spec bodies (bodies init).

Figure 5.12: mrec_spec Definition

RPost; a return relation, RR; and two specifications, phil and phi2; the specifications phil and
phi2 are contained in the relation padded_refines RPre RPost RR if and only if RPre; RPost

pad phil Cpp pad phi2. We write the padded refinement relation as RPre; RPost =, phil C gy phi2.

In Figure 5.11, we introduce several simple ['Tree specifications that implement quantification over
some types, and assumption and assertion of propositions. The V_spec and J_spec specifications
rely on the CoveredType type class. A CoveredType instance for a type A contains an element of the
restricted type grammar, encoding, whose interpretation corresponds to A. It also contains a valid
surjection from the interpreted type response_type encoding to the original type A. In practice, we
always instantiate this surjection with the identity function, but this type class formalization gives
us the tools that we need without needing to do too much dependently typed programming. We
can use V_spec and J_spec to define assumption and assertion, respectively, as Prop is part of the

restricted grammar of types that SpecEvent can quantify over.
5.4.3. Padded Refinement Meta Theory

This subsection introduces some of the useful, verified metatheory we provide for I'Tree specifications in

terms of padded_refines relation.

We prove that we can compose refinement results with the monadic bind operator.
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Inductive RComposePostRel
(R1 : Rel D1 D2) (R2 : Rel D2 D3) (PR1 : PostRel D1 D2) (PR2 : PostRel D2 D3) :
PostRel D1 D3 :=
| RComposePostRel_intros (d1 : D1) (d3 : D3)
(a : response_type d1) (c : response_type d3) :
(V (42 : D2), R1 d1 d2 —R2 d2 d3 —
db, PR1 d1 d2 a b A PR2 d2 d3 b ¢) —
RComposePostRel R1 R2 PR1 PR2 d1 d3 a c.

Figure 5.13: Post relation composition

Theorem 26 (Padded Refinement Respects Bind). If RPre; RPost t-), phil Tgg phi2 and given any
r1 and r2 contained in RR, RPre; RPost -, kphil r1 Ty kphi2 72,

then RPre; RPost i~ bind phil kphil Cps bind phi2 kphiZ2.

We prove that the padded_refines relation is transitive. To state the transitivity result in full
generality, we need a PostRel relational composition operator. This operator is defined in Figure 5.13.
In addition to taking two post condition relations to compose, it relies on two precondition relations
known as coordinating relations. An coordinating event between d1 : D1 and d3 : D2 is any event
d2 : D2 which is related to d1 by the first coordinating relation and is related to d3 by the second.
To relate a four tuple d1 : D1,d3 : D3, a : response_type di, and c : response_type d3, we need to
prove that for any coordinating event d2, there exists some coordinating answer b : response_type d2

such that the first post condition relates d1,d2,a,b and the second post condition relates d2,d3,b,c.

Theorem 27 (Transitivity of Padded Refinement). If RPrel;RPost1 ), phil Cgg; phi2 and
RPre2; RPost2 -, phi2 Cgpp phi3, then

RPrel o RPre2; RComposePostRel RPrel RPre2 RPostl RPost2t), phil Cpps o grz phi3.

We prove a reasoning principle for mutually recursive specifications as well. To do this, we first
provide a slightly different definition of mutual recursion that handles the quantifier events correctly,
defined in Figure 5.12. The key to proving refinements between mrec_spec specifications is to use
the PreRel and PostRel relations to establish pre- and post- conditions on recursive calls. This
involves choosing a PreRel over recursive call events, RPreInv, and a PostRel over recursive call events,
RPostInv. Just like any form of invariants in formal verification, correctly choosing RPreInv and

RPostInv requires striking a careful balance between choosing preconditions that are weak enough to
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concrete t

[CONCRETERET] [CONCRETETAU]|
concrete (ret r) concrete (Tau t)

Va, concrete (k a)

[CONCRETEVIS]

concrete (Vis (Spec_vis e) k)

Figure 5.14: concrete Definition

hold, but strong enough to imply post conditions.

Theorem 28 (Padded Refinement Respects MRec). If recursive call events 1 and 2 are contained
i the precondition invariant RPreInv, and given any recursive call events, d1 and d2, contained
in RPrelnv, SumRel RPrelnv RPre; SumPostRel RPostInv RPost b, bodiesl dl Cippostiny a1 d2
bodies2 d2, then

RPre; RPost l—p mrec_spec bodiesl %1 L ppostiny 41 i2 Mrec_spec bodies2 2.

The hypotheses in this theorem state that the initial recursive calls, init1 and init2, are in the
precondition RPreInv, and that given any two recursive calls related by the precondition, d1 and d2,
the recursive function bodies refine one another, where recursive calls are related by RPreInv and
RPostInv and any other events are related by RPre and RPost. These reasoning principles allow us
to prove complicated propositions involving the coinductively defined refinement relation without

needing to perform direct coinduction.

While we include several parameter relations with the definition of padded_refines, at the top level,

we are typically interested in the case where all relations are set to equality.

Definition 28 (Strict Refinement). Specification phil strictly refines specification phi2 if and only

if eq; PostRelEq ), phil Eeq phi2. In this case, we write phil < phiZ2.

As a corollary of Theorem 27, strict refinement is a transitive relation, and is strong enough to allow

rewrites under the context of any other application of padded_refines.
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5.4.4. Interaction Tree Specification Incompleteness

One way to interpret ['Tree specifications is as sets of [Trees. Figure 5.14 defines a predicate of concrete
ITree specifications, which correspond to executable I'Trees. A concrete I'Tree specification contains
no quantifiers along any of its branches. We can map each ITree specification to the set of concrete

ITree specifications that refine it.

However, ITree specifications are not complete with respect to this interpretation. In particular,
there are pairs of ITree specifications that represent equivalent sets of concrete ITree specifications,
but do not refine one another. To see why, consider the following two ITree specification over an

empty event signature voidE.

Definition topl : itree_spec voidE unit :
V_spec void;; Ret tt.

Definition top2 : itree_spec voidE unit :
or_spec spin (Ret tt).

Both top1l and top2 are refined by all concrete ITree specifications of type itree_spec voidE unit.
We can prove the refinement for top1 by applying the right V rule, and reducing to a trivially satisfied
proposition. For top2, we know that every concrete I'Tree specification of this type is eutt to either
spin or Ret tt®. In each case, apply the right 3 rule and choose the corresponding branch. However,
given any relations RPre, RPost, RR, we cannot prove padded_refines RPre RPost RR topl top2. This
is because the only way to eliminate the Spec_V on the left is to provide an element of the void type,
which does not exist. This, along with the transitivity theorem, demonstrates that padded_refines is

strictly weaker than the subset relation on sets of refining concrete I'Tree specification.
5.5. Total Correctness Specifications

This section discusses how to encode and prove simple pre- and post- condition specifications using
ITree specifications. We also discuss how these definitions relate to our syntax-directed proof

automation.

5Proving this fact requires a nonconstructive axiom like the Law of The Excluded Middle.
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Definition call_spec (a : A) : itree_spec (callE A B + E) B := trigger (inl (Call a)).

Definition calling’ {F} “{EncodingType F} : (A — itree F B) —
(V¥ (c : callE A B) , itree F (response_type c)) :=
fun f ¢ = f (unCall c).
Definition rec_spec (body : A — itree_spec (callE A B + E) B) (a : A) :
itree_spec E B :=
mrec_spec (calling’ body) (Call a).
Definition rec_fix_spec
(body : (A — itree_spec (callE A B + E) B) - A —
itree_spec (callE A B + E) B) :
A — itree_spec E B :=
rec_spec (body call_spec).

Figure 5.15: rec_fix_spec Definition

Suppose we have a program that takes in values of type A and returns values of type B. Suppose we
want to prove that if given an input that satisfies a precondition Pre : A — Prop, it will return a
value that satisfies a postcondition Post : A — B — Prop without triggering any other events. The
postcondition is a relation over A and B to allow the postcondition to depend on the initial provided

value. We can encode these conditions in the following ITree specification.

Definition total_spec : A — itree_spec E B :=
fun a = assume_spec (Pre a);;
b <« d_spec B;;
assert_spec (Post a b);;
Ret b.

The specification assumes that the input satisfies the precondition, existentially introduces an output

value, asserts the post condition holds, and finally returns the output.

The total_spec specification can be effectively used compositionally. Consider a merge sort imple-
mentation, named sort, built on top of two recursively defined helper functions, one for splitting a
list in half, named halve, and one for merging sorted lists, named merge. If we have already proven
specializations of total_spec for these sub functions, it becomes easier to prove a specification for
sort. Immediately we can replace these sub functions with their total correctness specifications. Now
consider how this total correctness specification will behave on the left side of a refinement. First,
we can eliminate assume_spec (Pre a) as long as we can prove Pre a. Once we have done that, we
get to universally introduce the output b, along with a proof that it satisfies the post condition. We

are finally left with only Ret b with the assumption Post a b. This is a much simpler specification
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than our initial executable specification, which relied on several control flow operators including a

recursive one.

However, this easy to use specification is not easy to directly prove. The padded_refines_mrec rule
gives us a sound reasoning principle for proving that a recursively defined function refines another
recursively defined function, but it does not give any direct insight into how to prove any refinement
that does not match that syntactic structure. To address this, we introduce a recursively defined

version of total_spec_fix that we can apply our recursive reasoning principle on.

First, we introduce a specialization of the mrec_spec combinator called rec_fix_spec, defined in
Figure 5.15. The rec_fix_spec function has a type similar to that of a standard fixpoint operator.
The first argument, body, is a function that takes in a type of recursive calls

A — itree_spec (callE A B + E) B and an initial argument of type A and produces a result in terms
of an I'Tree specification. It relies on the calling’ function to transform this value into a value of
type V (c:callE A B), itree_spec (callE A B + E) B which the mrec_spec function requires. From
there it relies on the call_spec and rec_spec functions to wrap values of type A into Call events
and trigger them. Given this recursion operator, we introduce an equivalent version of the total

correctness specification, total_spec_fix.

Definition total_spec_fix : A — itree_spec E B :=
rec_fix_spec (fun rec a =

assume_spec (Pre a);;

n « d_spec nat;;

trepeat n (
a’ <« d_spec A;;
assert_spec (Pre a’ A Rdec a’ a);;
rec a’

)5

b <« d_spec B;;

assert_spec (Post a b);;

Ret b).

This specification is reliant on the trepeat n t function, with simply binds an ITree, t, onto the
end of itself n times. Note that total_spec_fix is defined recursively, and contains the elements of
total_spec inside the recursive body. This makes it easier to relate to recursively defined functions.
It begins by assuming the precondition and ends by introducing an output, asserting it satisfies

the post condition, and returning the output. What comes between these familiar parts requires
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more explanation. Recall the discussion of the padded_refines_mrec rule. This reasoning principle
lets you prove refinement between two recursively defined ITree specifications when a single layer of

unfolding of each specification matches up one to one with recursive calls.

This means that to have a useful, general, and recursively defined version of total correctness
specification we need to allow our recursive definition for total correctness specification to choose
the number of recursive calls the function requires. For this reason, total_spec_fix existentially
introduces a number n that specifies how many recursive calls are needed for one level of unfolding
of the recursive function starting at a. The specification then includes n copies of a specification
that existentially chooses a new argument a’, asserts a predicate holds on it, and then recursively
calls the specification on this new argument. This asserted predicate contains two parts. First, we
assert the precondition. A correct recursively defined function should not call itself on an invalid
input if given a valid input. Second, we assert that a’ is less than a according to the relation Rdec.
In order for total_spec_fix to actually be equivalent to total_spec, we need to assume that Rdec is
well-founded”. The fact that Rdec is well-founded ensures that this specification contains no infinite
chains of recursive calls. This allows us to prove that total_spec_fix refines total_spec as long as

Rdec is well-founded.

Theorem 29 (Total Spec Fix Correctness). If Rdec is a well-founded relation, then

total_spec_fixz Pre Post Rdec a strictly refines total_spec Pre Post a.

This theorem allows us to initially prove refinement specifications for recursive functions using
the padded_refines_mrec rule with total_spec_fix and then replace it with the easier to work with

total_spec.

Both total_spec and total_spec_fix do not accept any ITree specifications that trigger any events.
As a result, these total correctness specifications do not allow any exceptions to be raised, as you

would expect with total correctness specifications.
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Definition merge : (list nat * list nat) — Definition merge_pre p :=

itree_spec E (list nat) := let 2(11,12) := p in
rec_fix_spec (fun rec ’(11,12) = sorted 11 A sorted 12.
bl « is_nil 11;; Definition merge_post ’(11,12) 1 :=
b2 « is_nil 12;; sorted 1 A Permutation 1 (11 ++ 12).
if bl : bool then
Ret 12
else if b2 : bool then
Ret 11 Definition rdec_merge ’(11,12) ’(13,14) :=
else length 11 < length 13 A
x < head 11;; length 12 = length 14 V
tx < tail 11;; length 11 = length 13 A
y < head 12;; length 12 < length 14.

ty <« tail 12;;
if Nat.leb x y then

1 <rec (tx, y::ty);; Theorem merge_correct : V11 12,

Ret (x :: 1) merge (11,12) <total_spec merge_pre
else merge_post (11,12).

1 «rec (x::tx, ty);;

Ret (y::1)).

Figure 5.16: Merge implementation

5.5.1. Demonstration

To demonstrate how to work with total_spec, we describe how to verify the merge function, a key
component of the merge sort algorithm. The merge function takes two sorted lists and combines
them into one larger sorted list which contains all the original elements. In Figure 5.16, we present a
recursively defined implementation of merge along with relevant relations and the correctness theorem.
The merge function is based on the standard list manipulating functions is_nil, head, and tail. We
assume that the event type E contains some kind of error event which is emitted if head or tail is

called on an empty list.®

The merge function relies on its arguments being sorted and guarantees that its output is a single,
sorted list that is a permutation of the concatenation of the original lists. We formalize these
conditions in merge_pre and merge_post. To prove that merge is correct, we want to show that
it refines the total specification built from its pre- and post- conditions. To accomplish this, it
suffices to choose a well founded relation and prove that merge satisfies the resulting total_spec_fix

specification. For this function, we use rdec_merge which ensures that the pairs of lists that we

"We use the Coq standard library’s definition of well-foundedness for this.
8We manage this assumption with the ReSum typeclass. This typeclass is discussed conceptually in Chapter 2 and
the code of this particular implementation is provided in Appendix A.
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recursively call merge on either both decrease in length, or one decreases in length and the other has

the same length.

This leaves us with a refinement goal between two recursively defined specifications. We can then
apply the padded_refines_mrec_spec theorem. For the relational precondition, we require that each
pair of Call events is equal, and that Pre holds on the value contained within the call. For the
relational postcondition, we require that equal Call events return equal values and that Post holds
on them. Finally, we can prove that the body merge refines the body of total_spec_fix given these
relation pre- and postconditions. We accomplish this by setting the existential variables on the right
to make a single recursive call and give it the same argument as the recursive call that the body of

merge makes.

With this technique, we can verify the simple server introduced in Section 5.1. Recall that the
server_impl program executes an infinite loop of receiving a list of numbers, sorting it, and sending
it back as a message. To verify server_impl, we first verify halve, the remaining sub function of sort,
using the same technique we used to prove the correctness of merge. We can then use these facts to

prove the correctness of sort, and use the correctness of sort to prove the correctness of server_impl.
Theorem 30 (Server Correctness). server_impl tt strictly refines server_spec tt.
5.6. Automation and Evaluation

5.6.1. Auto-active Verification

A key goal of this work is to provide auto-active automation for I'Tree specifications refinement. To
this effect, the current section presents an automated Coq tactic for proving refinement goals called
prove_refinement. The prove_refinement tactic is designed to reduce proof goals about refinement
of programs to proof goals about the data and assertions used in those programs. In the spirit of
auto-active verification, this is done mostly automatically, but with the user guiding the automation

in places where human insight is needed.

The prove_refinement tactic defers to the user in two specific places. The first is in defining invariants
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for uses of the mrec recursive function combinator. The tool defers to the user to provide these
invariants because inferring such invariants is undecidable. The second place where prove_refinement
defers to the user is in proving non-refinement goals regarding first order data. The user can then

apply other automated and/or manual proof techniques for the theories of the resulting proof goals.

The prove_refinement tactic is defined using a collection of syntax-directed inference rules for proving
refinement goals. The tactic proves refinement goals by iteratively choosing and applying a rule that
matches the current goal and then proceeding to prove the antecedents. The prove_refinement tactic
implements this strategy using the Coq hint database mechanism, which is already a user-extensible

mechanism for proof automation using syntax-directed rules.

Further implementation details are provided in the artifact. It is important to keep in mind that
we do not claim the implementation of the prove_refinement tactic is novel or interesting. What is
novel and interesting is that ITree specifications are designed in such a way that the straightforward

implementation is able to achieve impressive results.
5.6.2. Evaluation

He et al. (2021) discussed using Heapster to verify the interface of mbox, a key datastructure in
the implementation of the Encapsulating Security Payload (ESP) protocol of IPSec. This section
extends this discussion by using I'Tree specifications to write and verify specifications the functional
specifications produced by Heapster. It also compares the task of verifying one example function
using Heapster and I'Tree specifications with the task of verifying the same function using the VST
separation logic (Appel, 2011). It also presents a table with all the mbox functions verified with
Heapster and ITree specifications along with a coarse measurement of the effort involved in the

verification.
5.6.2.1 Data Representation

The mbox datastructure, whose type is presented in Figure 5.17a, represents a data packet as a linked
list of buffers. Each buffer is a segment of a 128 element array of unsigned 8-bit integers. The buffer

consists of len integers starting at the index start in the array, data.

118



typedef struct mbox_c {
size_t start;
size_t len;
struct mbox_c *next;
uint8_t data[128];

} mbox_c;

(a) mbox type in C

Definition mbox_coq :=
list (int64 *
int64 *
vector 128 uint8).

Fixpoint mbox_vst
(m : mbox_coq) (p : ptr) :=
match m with
| [ =p = NULL A emp
| (x,y,v) :: m =
3p’ p e y,p’,v)

mbox_heapster = p X.
(ptr(W,0) +— int64 x*
ptr(W,8) — int64 =
ptr(W,16) — X *

* mbox_vst p’ m array(W,24,128,uint8))
end. V eq(NULL)
(b) mbox representation invariant in VST (¢c) mbox type in Heapster

Figure 5.17: mbox representation information

He et al. (2021) type checked and extracted functional specifications for several functions that
manipulate mbox. Using [Tree specifications, we specified and verified the behavior of these functional
specifications using our auto-active verification tool. These functions are nontrivial, combining loops,

recursion, and pointer manipulations.

The functional specification extraction relied heavily on the Heapster type for mbox presented in
Figure 5.17c, mbox_heapster. This recursively defined type defines the memory layout of a valid
mbox on the heap. The mbox_heapster type accepts pointers that either point to a pair of 64-bit
integers, a 128 element array of unisgned 8-bit integers, and another mbox_heapster pointer, or are
null. Pointer structures that satisfy this heapster type represent the same information as contained
in the mbox_coq type presented in Figure 5.17b. The mbox_coq type is the type of lists of tuples

which contain two 64-bit integers and a 128 element vector of unsigned 8-bit integers.

A state-of-the-art technique to verify this code is in a separation logic like VST (Appel, 2011).

Separation logics like VST provide tools for reasoning about disjoint segments of the heap, like
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mbox_len_vst :=
DECLARE mbox_len_c
WITH (p : ptr), (ml : mbox_coq) mbox_len_heapster :=
PRE (m : mbox_heapster) —o
PARAMS (p) (m : mbox_heapster)*
SEP (mbox_rep ml p) (ret : int64)
PROP (T)
POST Definition mbox_len_itree_spec
d (x : int64) (m2 : mbox), := total_spec top
RETURN (x) (fun m1 (m2,x) =
SEP (mbox_rep m2 p) x = mbox_len_coq ml
PROP (x = mbox_len_coq ml A ml = m2).
A ml = m2)
(b) Heapster type and ITree specification for
(a) VST specification for mbox_len_c mbox_len_c

Figure 5.18: Reasoning about mbox_len_c

the separating conjunction operator *. These tools can be used to define representation invariants,
predicates that express that the information in a particular segment of the heap represents some
abstract datastructure. The mbox_vst heap predicate, presented in Figure 5.17b, is a representation
invariants for the mbox datastructure written in the VST separation logic. The heap predicate,
mbox_vst m p, asserts that the heap segment pointed to by pointer p represent the mbox_coq value
m. An empty list mbox is represented by the null pointer. An mbox with data at its head, (x,y,v)::m
is represent by a pointer p which points to a segment of data containing 64-bit integers x and y, a

pointer p’ that represents the mbox, m, and a 128 element vector of unsigned 8-bit integers, v.

This heap predicate is recursively defined and closely resembles the Heapster type for mbox. The
primary difference, beyond syntax, is that mbox_vst predicate ensures that a pointer structure
represents a particular mbox m, while mbox_heapster ensures that a pointer structure represents
some mbox. This difference is due to the fact that Heapster types are used solely to reason about
memory safety. These types are not present in the functionality reasoning steps where the particular

mbox matters.
5.6.2.2 Example Program

Consider the mbox_len_c function presented in the following code.

120



size_t mbox_len_c(const mbox *m) {
// Add up the cumulative lengths of the mbox chain
size_t total = 0;
while (m != NULL) {
total += m->len;
m = m->next;
}

return total;

This function takes in a pointer to an mbox, loops through it, and returns the total sum of the
lengths of each buffer. The function also leaves its input unchanged, neither mutating any of the
data values nor deallocating any of the memory. The behavior of this heap-manipulating C code is
equivalent to the following Coq code, which sums up the lengths of each buffer in an mbox using a

functional list fold.

Definition mbox_len_coq m := fold add (map (fun (x,y,z) =y) m) O.

With the Heapster-ITree specification pipeline, the specification of this behavior is split into two parts.
First, the function is assigned the Heapster type, mbox_len_heapster presented in Figure 5.18b.
This type ensures that the mbox_len_c function takes in a valid mbox, returns a 64-bit integer, and
leaves a valid mbox in the location of the input. The typing derivation that proves that mbox_len_c
has type mbox_len_heapster is then used to automatically construct a functional specification.
Finally, we prove that the functional specification has the desired behavior, ensured by the fact that
it refines the mbox_len_itree_spec specification also presented in Figure 5.18b. This specification
states that given an arbitrary input, the function returns the length of the input, as defined by

mbox_len_coq, and an mbox equal to the input.

To verify the same behavior with VST, we need a specification that contains the information contained

in both mbox_len_heapster and mbox_len_itree_spec. Figure 5.18a presents a streamlined version
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of the mbox_len_vst specification for mbox_len_c. The DECLARE clause determines which function
this specification is for. The WITH clause introduces variables in scope for the rest of the specification.
In this specification, it introduces a pointer, p, that is the input to the function and an mbox, m1,

that is the mbox that is represented by the data at p.

The rest of the specification is broken up into the precondition, PRE, and the postcondition, POST.
Both the precondition and postcondition contain SEP and PROP clauses. Each SEP clause lists heap
predicates which describe the layout of the heap, either before the execution of the function in the
case of the precondition, or after the execution in the case of the postcondition. This corresponds
roughly to the information contained in Heapster types. Each PROP clause lists propositions that
describe the abstract mathematical values this function is reasoning about. This corresponds roughly

to the information included in ITree specification.

The precondition also contains the PARAMS clause. The PARAMS clause declares the inputs to the
function. In this case, the pointer p is the sole input to the function. The precondition’s PROP clause

is trivial in this case.

The POST clause begins using an existential quantifier to introduce values that are needed to describe
the output. In this case, it introduces a 64-bit integer representing the returned length, and an mbox,
m2, representing the unchanged datastructure represented at p. The postcondition also contains the
RETURN clause. The RETURN clause declares the value that the function returns. In this case, it is the
integer x. The postcondition’s SEP clause guarantees that p satisfies the representation invariant for
m2. Finally, the postcondition’s PROP clause asserts that the return value, x, is equal to the length of

the input mbox, m1, and that the input and output mbox values are the same.

A major difference between these two ways to verify the behavior of mbox_len_c is that the Heapster-
ITree specifications method provides a firm separation between reasoning about the structure of the
heap and reasoning about the abstract data transformations performed by the program. While the
VST specification does split provide different SEP and PROP clauses that break up the reasoning in a

similar way, this is a shallow interface on top of a logic in which the user must reason about these
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Function Name Description C LoC | Proof LoC
mbox_free_chain Deallocate an mbox chain 11 18
mbox_len Compute the length in bytes of an mbox chain 9 40
mbox_concat Concatenates an mbox chain after a single mbox 5 18
mbox_concat_chains Concatenates two mbox chains 14 24
mbox_split_at Split an mbox chain into two chains 25 147
mbox_copy Copy a single mbox 13 74
mbox_copy_chain Copy an mbox chain 18 173
mbox_detach Detach the first mbox from a chain 18 18
mbox_detach_from_end Detach the first N bytes from an mbox chain 3 50
mbox_randomize Randomize the contents of an mbox 9 121
mbox_drop Remove bytes from the start of an mbox 12 23

Figure 5.19: Verified mbox functions

concepts simultaneously.

In contrast, with Heapster and I'Tree specifications this conceptual separation is reified in the separate
stages of a verification pipeline. A proof engineer reasons about memory safety and heap layout
while writing the Heapster types. The Heapster tool then automatically generates a functional
specification. Finally, the proof engineer reasons separately about the behavior of the functional
specification. The ITree specifications auto-active verifier reduces this task to number of choices of

invariants and proofs of first order propositions.

Anecdotal Experience. While verifying the mbox_len_c function in VST, I found that this
separation between heap layout reasoning and functionality reasoning was a leaky abstraction.
In particular, the separation is not maintained at all when writing proofs, just when writing the
specifications. This made the proof noticeably more challenging. For C functions that can be
given a valid Heapster type, I believe verification using Heapster and ITree specifications is easier
than verification using VST. However, the Heapster type system is conservative compared to a full
separation logic like VST, so there remains C code that cannot be verified with the novel techniques

in this chapter.
5.6.2.3 Verified Functions

Figure 5.19 presents the full list of verified functions. For each function, we include the function’s

name, a description of its behavior, the number of lines of C code in its definition, and the number
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of lines of Coq code required to verify it. Lines of code are, of course, a very coarse metric for
judging the complexity of code and proofs. However, these metrics do demonstrate the viability of
this verification approach, showing that the remaining proof burden after the automation is of a

reasonable size.
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CHAPTER 6

Related Work

The work in this dissertation is part of a large and growing literature on program verification. This
chapter surveys the most closely related work, starting with modern formal verification in interactive
theorem provers. The remainder of the chapter is split into sections corresponding to work related

specifically to Chapters 3, 4, and 5 respectively.
6.1. Formal Verification in Interactive Theorem Provers

The primary purpose of this dissertation is to provide language independent formal specification tools.
In particular, it develops specification tools for the low level languages that [Trees are particularly well
suited to representing. These tools are formalized in the Coq proof assistant (Coq development team,
2023). There is also a vast body of prior work on Cog-based Proof Frameworks for program correctness.
Systems like YNot (Malecha et al., 2011), based on Hoare Type Theory, Iris (Jung et al., 2016),
VST (Appel, 2014), and FCSL (Sergey et al., 2015), all based on concurrent separation logic, and
CertiKOS (Gu et al., 2016, 2019), which uses certified abstraction layers, have had major success in
the field of large scale program verification. Those models typically rely on small-step, relationally-
specified operational semantics, and are especially useful for reasoning about concurrent programs.
There has only recently been success in modelling concurrent programs with a variant of I'Tree
semantics (Chappe et al., 2023). Formal verification is also commonly done in the Agda (Norell,
2007) and Isabelle/HOL (Nipkow et al., 2002) proof assistants. F*, a functional, general-purpose
programming language with dependent types and algebraic effects, is also commonly used for program

verification (Swamy et al., 2011).

While the literature is full of useful and powerful specification tools, most are specialized to a
particular language or system. For example, VST-Floyd (Appel, 2014) is a separation logic for C,
and CFML is a separation logic for OCaml (Charguéraud, 2011). The only work I am currently
aware of that has a goal similar to the overall dissertation is the Iris separation logic (Jung et al.,

2015). The Iris logic is both language independent and expressive enough represent a wide array
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of kinds of specifications, including noninterference (Frumin et al., 2019). Unlike this work, Iris is
focused on higher level languages, with features like arbitrary recursion, recursive types, and higher

order state.

There is other literature that falls in the intersection of ITrees and specifications. Koh et al. (2019)
uses I'Trees to specify the set of acceptable observable behaviors from server code. Both Conditional
Contextual Refinement (Song et al., 2023) and DimSum (Sammler et al., 2023) extend ITrees with

quantifier events and use the resulting structure as a language of specifications.
6.2. Dijkstra Monads Forever

Work on creating logics to verify program specifications for effectful languages dates back to the 1960’s.
Foundational works like Hoare (1969), Floyd (1967) and Dijkstra (1975) provided interpretations of
programs that map postconditions to preconditions. These were originally external proof techniques

for pen and paper proofs about the behavior of algorithms.

Chapter 3 builds directly on the Dijkstra monad literature (Maillard et al., 2019; Swamy et al., 2013).
This line of research has its roots in Hoare Type Theory (Nanevski et al., 2006), which presented a
dependently typed functional programming language with mutable state and a novel Hoare type.
A Hoare Type consists of some base type A, a precondition P on the state, and a postcondition
Q on the state; it is inhabited by a computation producing an A that changes the state in a way
that satisfies the postcondition given the precondition. This formulation is equivalent to specifying
stateful computations using the state transform of the DelaySpec monad as the specification monad.
Because Hoare Type Theory provides only partial correctness guarantees, it is less expressive than

the framework presented in Chapter 3.

The Dijkstra monad framework extends the ideas of Hoare Type Theory, adding support for algebraic
effects like exceptions and 10, as well as providing a general framework for adding a new effect and
a specification monad to handle it. This is used as an underlying technology for F*’s verification of
effectful programs with respect to specifications that can describe their effects and not just their

return values (Swamy et al., 2011). In contrast to our DelaySpec and TraceSpec monads, previous
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Dijkstra monads work has not directly addressed non-termination. We extend this work by adding
the ability to reason fully about divergence in specifications, while retaining the ability to reason

about interactions with the environment.
6.3. Secure Interaction Trees

Goguen and Meseguer (1982) introduced noninterference to formalize confidentiality; that is, the
intuitive notion that secret data does not leak to an adversary. Volpano et al. (1996) enforce
progress-insensitive noninterference with a type system, and Volpano and Smith (1997) modify
the type system enforce progress-sensitive noninterference. These results led to a long line of
work introducing noninterference to increasingly complicated settings (e.g., Myers and Liskov, 1998;
Myers, 1999; Abadi et al., 1999; Zdancewic and Myers, 2002; Pottier and Simonet, 2003; Tsai et al.,
2007; Russo et al., 2008; Rafnsson and Sabelfeld, 2014; Algehed and Russo, 2017; Milano and Myers,
2018; Vassena et al., 2018). Proving the security of these varied type systems led to complicated
arguments for noninterference, but also gave rise to an informal library of proof techniques. The

work in Chapter 5 fits into a tradition of proof techniques for noninterference via models.

Most models view noninterference either as a trace (hyper)property or as the result of an indistin-
guishability relation. These perspectives are not mutually exclusive; we can view two programs as
indistinguishable if they produce equivalent traces. Their focus, however, can be quite different.
Trace-based models view noninterference as a 2-safety hyperproperty (Clarkson and Schneider, 2010).
That is, noninterference can be falsified using finite prefixes of two traces. Specifically, for any
interfering program there are two inputs that differ only on secrets but produce distinguishable

events after a finite number of steps.

Indistinguishability models focus more on building compositional relations. Pioneered by Abadi et al.
(1999) and Sabelfeld and Sands (2001), these models use PERs and define secure programs as those
that are self-related. Two such approaches have yielded recent notable results. First, logical-relations
techniques (Reynolds, 1983) inductively assign each type a binary relation. By constructing the
relation to reflect the security requirements of the type, logical relations can reason about informa-

tion flow control and noninterference (Vassena et al., 2019; Rajani and Garg, 2018; Gregersen et al.,
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2021). Second, bisimulation approaches directly match up program executions to define indistin-

guishability (Smith, 2003; Focardi et al., 2002).

This work straddles these methods. I'Trees intuitively collect all possible traces of a program into
one infinite data structure. Our binary indistinguishability relation on ITrees is thus combining
the hyperproperty model of noninterference with the indistinguishability model. Moreover, our
indistinguishability relation is built on top of weak bisimulation. To give meaning to a type system,

we also build a small logical relation connecting types to our bisimulation arguments.

To remain practical, many languages provide only progress-insensitive guarantees (e.g., Magrino et al.,
2016; Liu et al., 2017; Volpano et al., 1996; Pottier and Simonet, 2003), despite the fact that termi-
nation channels can leak arbitrary amounts of data (Askarov et al., 2008). Techniques for enforcing
progress-sensitive guarantees (Volpano and Smith, 1997; Sabelfeld and Myers, 2003) exist, but have
seen little use. Recent work attempts to unify the two by explicitly considering termination leaks as
declassifications (Bay and Askarov, 2020). Like other models of noninterference (Gregersen et al.,
2021), seutt, defined in Section 4.4, is naturally progress-sensitive, giving a strong guarantee. Sec-
tion 4.4 also includes the progress-insensitive pi-seutt to give ['Tree-based semantics to more-practical

systems as well.

The reasoning principles in Chapter 4 apply to effectful languages and model effects as is standard with
ITrees. The information-flow community also studies effects deeply since they can leak information.
Traditionally, information-flow languages use a program-counter label to reason about effects, as we
saw in Section 4.5. Recent work by Hirsch and Cecchetti (2021) connects program-counter labels

with monads, giving the former semantics using the latter.

Secure compilation is a very active research area. For instance, Barthe et al. (2004) show how to
securely compile to a low-level AsM-like target language. However, they use a type system for the
target language to enforce security. Other efforts focus on particular language features, such as
cryptographic constant time (Barthe et al., 2018). Moreover, until recently, most work on secure

compilation focused on fully-abstract compilation Leroy (2009). Unfortunately, (Abate et al., 2019)
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recently showed that full abstraction is not sufficient to guarantee preservation of hyperproperties
like noninterference. Our Mixed Transitivity theorems (Theorems 12 and 18) show that equivalence-

preserving compilation does preserve noninterference.

Beyond work on secure compilation, most research on noninterference does not address multiple
interacting languages. In one notable exception, Focardi et al. (2005) examine the relationship
between a process-calculus—based notion of security and a language-based notion of security, using a
simpl imperative language similar to IMP. They translate their version of IMP into CCS and show
that they preserve IMP’s security guarantees. However, their work contains only pencil-and-paper

proofs, rather than formally verifying their translation or its security.

Finally, this work focuses on an approach for verifying language toolchains, but running any program
requires hardware. Most language-based security and verification work assumes the hardware is
predictable and reliable, but cannot enforce security. Hardware enforcement of information-security
properties (Zhang et al., 2012; Zagieboylo et al., 2019) provides dynamic enforcement of properties
like noninterference at the cost of space and power usage. Combining these mechanisms with our
approach could reduce the overhead of hardware enforcement for verified-secure programs and provide

a means to guarantee that interactions with unverified programs remain safe.
6.4. Interaction Tree Specifications

Chapter 5 builds on the work of Chapter 3, providing a second Dijkstra Monad for reasoning about
interaction trees. ITree specifications form a Dijkstra monad where the type itree_spec E R acts as
the specification monad and the corresponding I'Tree monad itree E R without logical quantifier
events forms the computation monad. The effect observation homomorphism is then the natural
embedding from the I'Tree type without quantifiers to the ITree specification type with quantifiers.
Most Dijkstra monads are specialized to act as either partial specification logics, which always
accept any nonterminating computations, or total specification logics, which always reject any
nonterminating computations. This means that most existing Dijkstra monads cannot reason about
termination-sensitive properties like liveness. I'Tree specifications have the advantage of admitting

specifications that accept particular divergent computations and not others. For example, an
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ITree specification could accept any computation that produces an infinite pattern of messages and

responses from a server, and reject any computation that silently diverges.

Chapter 3 and Chapter 5 both provide a Dijkstra monad for I'Trees that is expressive enough to reason
about termination-sensitive properties. Both Dijkstra monads are capable of expressing specifications
that allow for specifying infinite behavior. However, Chapter 3 does not provide reasoning principles
for general recursion. The fact that I'Tree specifications represent specifications as I'Trees enabled the
creation of elegant reasoning principles for recursion. It also enabled to creation of an auto-active

verification tool to greatly reduce the effort in writing proofs of specification refinement.

The ultimate goal of Chapter 5 is to provide techniques for auto-active verification of imperative
code. Therefore, it is natural to compare this work to semi-automated separation logic tools like
VST-Floyd (Appel, 2014) and CFML (Charguéraud, 2011). We argue this approach has two major
advantages over these related techniques. First, while VST-Floyd is specialized to C and CFML is
specialized to OCaml, I'Tree specifications can be used to specify any programs with an I'Trees based
semantics. When paired with Heapster techniques (He et al., 2021), ITree specifications can be used
to specify a wide array of imperative, heap-manipulating languages with a memory-safe type system.
In particular, the Heapster type system is closely related to the Rust type system, meaning these
techniques should be adaptable to specify and verify Rust code. Second, the Heapster types are
able to perform all the pointer manipulation and heap layout specific reasoning, freeing the verifier
to focus on the underlying mathematical structures. In separation logics like VST, proof engineers
can invent a functional specification, prove it correct with respect to the original program, and
then reason further about the functional specification. Heapster generates functional specifications
automatically from Heapster typing derivations. This enables a verification pipeline where reasoning
about memory safety can be fully separated from reasoning about functional correctness. However,
this automation comes at a cost in the form of lessened expressiveness. The Heapster type system
is conservative and will reject some programs whose behavior could be verified in a full separation

logic like VST.
The primary innovation of Chapter 5 is to turn ITrees into a specification language by adding
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quantifier events. Similar ideas were independently developed in Song et al. (2023) and Sammler et al.
(2023). In Sammler et al. (2023), ITrees with quantifiers are used to denote and specify programs
with multilanguage features, i.e. linking code from two different languages. In Song et al. (2023),
ITrees with quantifiers are used to model programs and specifications in a framework designed
to have the common benefits of both refinement-based and separation logic-based specification
frameworks. Common to both of these works is using ITrees to model modules, separately defined
pieces of code that communicate through external calls. Both use events to model inter-module
communication. One major distinction between this line of work and other I'Trees work is precisely
how ITrees are used to model computation. In most [Trees work, a program’s control flow is made
explicit with ITree combinators, and events are given semantics using handlers and interpretation,
as described in Chapter 2. These papers give semantics to all events, quantifier or otherwise,
with a novel simulation relation, reasoning about ITrees as a form of labelled transition system.
The ITrees are then reasoned about in terms of a trace semantics. This approach has produced
impressive results, but these kinds of I'Trees semantics miss out on some common advantages of the
ITrees approach that the work in this dissertation retains. The semantics in Song et al. (2023) and
Sammler et al. (2023) are not executable even when they lack any quantifier events. This prevents
such semantics from being used as a reference implementation, or from being tested with testing
tools like QuickChick (Lampropoulos and Pierce, 2018; Lampropoulos et al., 2018). This approach
is also too separate from other I'Tree work to take full advantage of it. For example, Chapter 5 makes
heavy use of a recursion operator adapted from earlier ITrees work (Xia et al., 2020). As such, this
chapter benefitted greatly from previous I'Trees work which used this operator, and contributed to
the body of work by showing how to reason about that operator. Recursion in Song et al. (2023)
and Sammler et al. (2023) is novel to that work, and cannot be easily compared to recursion in

previous ITrees work.
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CHAPTER 7

Conclusion

7.1. Contributions

This dissertation presents reusable, language independent tools for different calls of specifications
over programs with ITree semantics. Each tool leverages the flexibility of ITrees semantics to make
sure that work can be reused across different programming languages. These tools are presented and

discussed in Chapters 3, 4, and 5.

Dijkstra Monads Forever. Chapter 3 presents techniques for creating algebraic-effect aware
specifications for programming languages that use I'Tree semantics. These techniques adapted the
Dijkstra monad (Swamy et al., 2013; Ahman et al., 2017) techniques by providing a specification
monad for I'Trees. Chapter 3 also provides example specifications that can be represented in these

specification monads.

Semantics for Noninterference with Interaction Trees. Chapter 4 presents termination
sensitive and insensitive indistinguishability relations for I'Trees. These relations enable reasoning
about information flow in programming languages that use I'Tree semantics. Chapter 4 also shows
how to use these relations to reason about a noninterference type system in a simple language with

inlined assembly code.

Interaction Tree Specifications. Chapter 5 augments I'Trees with logical quantifiers to serve as a
language of specifications for ITrees. Chapter 5 also presents verified metatheory for reasoning about
specification refinement along with an auto-active tool for proving specification refinement. The
chapter also demonstrates how to use ITree specifications with the Heapster (He et al., 2021) tool to
verify real C programs. This demonstration includes a comparison between verifying a particular
example program with Heapster types and I'Tree specifications and verifying the same program in

the VST separation logic (Appel, 2011).
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7.2. Future Work

7.2.1. Dijkstra Monads Forever

Maillard et al. (2020) extends the Dijkstra Monad framework from dealing strictly with unary
programming logics to dealing with relational programming logics. This allows the formalization
of specifications that relate the behavior of two different programs assuming their inputs satisfy
some input condition. The work accomplishes this by introducing the concept of a simple relational
specification monad. Simple relational specification monads serve as the type of specifications for
computations. These techniques may be able to be used to provide a useful relational program logic

for ITrees.

In Chapter 3, the Dijkstra monad for I'Trees is shown to be a valid and expressive domain for writing
and verifying specifications. However, it remains unclear how effective this tool is for reducing
the burden of verification of computations written with ITrees. Further research could investigate
creating further tooling, for example a library of proof tactics, that utilizes the structure of Dijkstra
monads to simplify this kind of reasoning. Investigating the tooling underlying the F* (Swamy et al.,
2011) programming language could be particularly useful, as this language uses Dijkstra monads

along with refinement types to produce verified code.

Semantics for Noninterference with Interaction Trees.

Future work could investigate generalizations of the indistinguishability relations presented in this
paper that are heterogeneous in the event type signature, more like rutt than eutt. This added
flexibility would allow the formalization of reasoning principles for indistinguishability over mutually
recursively defined computations, computed with the mrec combinator. This could enable reasoning

about programming languages with mutually recursively defined functions.

Future work can also further investigate noninterference and interpretation, already partially discussed
in Section 4.4.4. This section restricted attention to state. Using insights from Yoon et al. (2022),

which presents monadic interpreters which generalize the interp function over I'Trees, researchers
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may be able to create sound conditions for ensuring that handlers respect interpretation. That
is, ensuring that handlers take indistinguishable source computations to indistinguishable target

computations.

Interaction Tree Specifications.

Chappe et al. (2022) presented a variant of Interaction Trees designed to represent nondeterministi-
cally branching computations called Choice Trees. They accomplish this by adding a new constructor
to ITrees that is analogous to an existential choice operator. Future work could investigate the
connections between Choice Trees and ITree specifications, and answer the question of whether
either subsumes the other. And if neither subsumes the other, then researchers could investigate
adapting the I'Tree specifications to Choice Trees. This would serve as a step towards adapting the

ITree specifications framework to concurrent programs.
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APPENDIX A

Alternate Interaction Trees Definition

Figures A.1 and A.2 presented in this appendix present a definition of ITrees where events are
represented by a single type rather than a type family, as discussed in Chapter 5. The definitions
presented in this appendix are highly similar to counterpart definitions presented in Chapter 2.

Please refer to that chapter for intuitive explanations.
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CoInductive itree (E : Type@{a}) “{EncodingType E} (R : Type@{al}) : Type@{al} :=
| Ret (r : R)
| Tau (t : itree E R)
| Vis (e : E) (k : response_type e — itree E R).

CoFixpoint bind (t : itree ER) (k : R — itree E §) :=
match t with
| Ret r =k r
| Tau t = Tau (bind t k)
| Vis e kvis = Vis e (fun x = bind (kvis x) k)
end.

CoFixpoint interp_mrec {R : Type}
(bodies : V(d:D), itree (D + E) (response_type d))
(t : itree (D + E) R) : itree E R :=
match t with
| Ret r = Ret T
| Tau t = Tau (interp_mrec bodies t)
| Vis (inr e) k = Vis e (fun x = interp_mrec bodies (k x))
| Vis (inl d) k = Tau (interp_mrec bodies (bind (bodies d) k))
end.

Definition mrec (bodies : V(d:D), itree (D + E) (response_type d)) (init : D) :=
interp_mrec bodies (bodies init).

Figure A.1: Alternate definitions for Interaction Trees and key operators

, RR rl r2 eutt RR t1 t2

[EUTTRET’] [EuTTTAU’]

eutt RR (ret rl) (ret r2) eutt RR (Tau t1) (Tau t2)
Va, eutt RR (k1 a) (k2 a) ; eutt RR t1 t2
[EUuTTVIS’]| [EuTTTAUL’|

eutt RR (Vis e k1) (Vis e k2) eutt RR (Tau t1) t2

eutt RR t1 t2

[EUTTTAUR’|

eutt RR t1 (Tau t2)

Definition 29. Given:
e an event signature E;
e return types R1 and R2;
e and a return relation over R1 and R2, RR,

equivalence up to taus with RR, a relation between itree E Rl and itree E R2, is defined with the inference
rules presented in Figure A.2. We write this relation as eutt RR t1 t2.

Figure A.2: eutt definition for alternate Interaction Trees definition
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Class ReSum (E1 : Type) (E2 : Type) “{EncodingType E1} “{EncodingType E2} :=
{

resum : E1 — E2;

resum_ret : V{e : El1}, response_type (resum e) — response_type e;

}.
Notation "E1 -< E2" := (ReSum E1 E2) (at level 10).

Definition trigger {E1 E2} “{EncodingType E1} “{EncodingType E2} “{El1 -< E2} :
V (el : E1), (itree E2 (response_type el)) :=
fun e = Vis (resum e) (fun x = Ret (resum_ret x)).

Figure A.3: ReSum definition for alternate Interaction Trees definition
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